Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1
- URL: http://arxiv.org/abs/2408.15678v2
- Date: Thu, 29 Aug 2024 09:37:38 GMT
- Title: Deep Learning Based Speckle Filtering for Polarimetric SAR Images. Application to Sentinel-1
- Authors: Alejandro Mestre-Quereda, Juan M. Lopez-Sanchez,
- Abstract summary: We propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network.
Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation.
- Score: 51.404644401997736
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Speckle suppression in synthetic aperture radar (SAR) images is a key processing step which continues to be a research topic. A wide variety of methods, using either spatially-based approaches or transform-based strategies, have been developed and have shown to provide outstanding results. However, recent advances in deep learning techniques and their application to SAR image despeckling have been demonstrated to offer state-of-the-art results. Unfortunately, they have been mostly applied to single-polarimetric images. The extension of a deep learning-based approach for speckle removal to polarimetric SAR (PolSAR) images is complicated because of the complex nature of the measured covariance matrices for every image pixel, the properties of which must be preserved during filtering. In this work, we propose a complete framework to remove speckle in polarimetric SAR images using a convolutional neural network. The methodology includes a reversible transformation of the original complex covariance matrix to obtain a set of real-valued intensity bands which are fed to the neural network. In addition, the proposed method includes a change detection strategy to avoid the neural network to learn erroneous features in areas strongly affected by temporal changes, so that the network only learns the underlying speckle component present in the data. The method is implemented and tested with dual-polarimetric images acquired by Sentinel-1. Experiments show that the proposed approach offers exceptional results in both speckle reduction and resolution preservation. More importantly, it is also shown that the neural network is not generating artifacts or introducing bias in the filtered images, making them suitable for further polarimetric processing and exploitation.
Related papers
- PolMERLIN: Self-Supervised Polarimetric Complex SAR Image Despeckling
with Masked Networks [2.580765958706854]
Despeckling is a crucial noise reduction task in improving the quality of synthetic aperture radar (SAR) images.
Existing methods deal solely with single-polarization images and cannot handle the multi-polarization images captured by modern satellites.
We propose a novel self-supervised despeckling approach called channel masking, which exploits the relationship between polarizations.
arXiv Detail & Related papers (2024-01-15T07:06:36Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
We propose a Difusion-based Anomaly Detection (DiAD) framework for multi-class anomaly detection.
It consists of a pixel-space autoencoder, a latent-space Semantic-Guided (SG) network with a connection to the stable diffusion's denoising network, and a feature-space pre-trained feature extractor.
Experiments on MVTec-AD and VisA datasets demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-12-11T18:38:28Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
Our approach considers anomalies as abnormal patterns that deviate from their surroundings but without any prior knowledge of their characteristics.
Our proposed method aims to address these issues through a self-supervised algorithm.
Experiments are performed to show the advantages of our method compared to the conventional Reed-Xiaoli algorithm.
arXiv Detail & Related papers (2022-10-28T10:22:29Z) - A Fast Alternating Minimization Algorithm for Coded Aperture Snapshot
Spectral Imaging Based on Sparsity and Deep Image Priors [8.890754092562918]
Coded aperture snapshot spectral imaging (CASSI) is a technique used to reconstruct three-dimensional hyperspectral images (HSIs)
This paper proposes a fast alternating minimization algorithm based on the sparsity and deep image priors (Fama-P) of natural images.
arXiv Detail & Related papers (2022-06-12T03:29:14Z) - Coarse-to-Fine Sparse Transformer for Hyperspectral Image Reconstruction [138.04956118993934]
We propose a novel Transformer-based method, coarse-to-fine sparse Transformer (CST)
CST embedding HSI sparsity into deep learning for HSI reconstruction.
In particular, CST uses our proposed spectra-aware screening mechanism (SASM) for coarse patch selecting. Then the selected patches are fed into our customized spectra-aggregation hashing multi-head self-attention (SAH-MSA) for fine pixel clustering and self-similarity capturing.
arXiv Detail & Related papers (2022-03-09T16:17:47Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Spatially-Adaptive Image Restoration using Distortion-Guided Networks [51.89245800461537]
We present a learning-based solution for restoring images suffering from spatially-varying degradations.
We propose SPAIR, a network design that harnesses distortion-localization information and dynamically adjusts to difficult regions in the image.
arXiv Detail & Related papers (2021-08-19T11:02:25Z) - Robust Unsupervised Small Area Change Detection from SAR Imagery Using
Deep Learning [23.203687716051697]
A robust unsupervised approach is proposed for small area change detection from synthetic aperture radar (SAR) images.
A multi-scale superpixel reconstruction method is developed to generate a difference image (DI)
A two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes.
arXiv Detail & Related papers (2020-11-22T12:50:08Z) - SAR Image Despeckling by Deep Neural Networks: from a pre-trained model
to an end-to-end training strategy [8.097773654147105]
convolutional neural networks (CNNs) have recently shown to reach state-of-the-art performance for SAR image restoration.
CNN training requires good training data: many pairs of speckle-free / speckle-corrupted images.
This paper analyzes different strategies one can adopt, depending on the speckle removal task one wishes to perform.
arXiv Detail & Related papers (2020-06-28T09:47:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.