Multiscale Mesh Deformation Component Analysis with Attention-based
Autoencoders
- URL: http://arxiv.org/abs/2012.02459v1
- Date: Fri, 4 Dec 2020 08:30:57 GMT
- Title: Multiscale Mesh Deformation Component Analysis with Attention-based
Autoencoders
- Authors: Jie Yang, Lin Gao, Qingyang Tan, Yihua Huang, Shihong Xia and Yu-Kun
Lai
- Abstract summary: We propose a novel method to exact multiscale deformation components automatically with a stacked attention-based autoencoder.
The attention mechanism is designed to learn to softly weight multi-scale deformation components in active deformation regions.
With our method, the user can edit shapes in a coarse-to-fine fashion which facilitates effective modeling of new shapes.
- Score: 49.62443496989065
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deformation component analysis is a fundamental problem in geometry
processing and shape understanding. Existing approaches mainly extract
deformation components in local regions at a similar scale while deformations
of real-world objects are usually distributed in a multi-scale manner. In this
paper, we propose a novel method to exact multiscale deformation components
automatically with a stacked attention-based autoencoder. The attention
mechanism is designed to learn to softly weight multi-scale deformation
components in active deformation regions, and the stacked attention-based
autoencoder is learned to represent the deformation components at different
scales. Quantitative and qualitative evaluations show that our method
outperforms state-of-the-art methods. Furthermore, with the multiscale
deformation components extracted by our method, the user can edit shapes in a
coarse-to-fine fashion which facilitates effective modeling of new shapes.
Related papers
- KP-RED: Exploiting Semantic Keypoints for Joint 3D Shape Retrieval and Deformation [87.23575166061413]
KP-RED is a unified KeyPoint-driven REtrieval and Deformation framework.
It takes object scans as input and jointly retrieves and deforms the most geometrically similar CAD models.
arXiv Detail & Related papers (2024-03-15T08:44:56Z) - Classification of complex local environments in systems of particle
shapes through shape-symmetry encoded data augmentation [0.0]
We propose a simple, physics-agnostic, yet powerful approach that involves training a multilayer perceptron (MLP) as a local environment for systems of particle shapes.
Our work thus presents a valuable tool for investigating selfassembly processes on systems of particle shapes.
arXiv Detail & Related papers (2023-12-19T03:27:38Z) - ShapeMatcher: Self-Supervised Joint Shape Canonicalization,
Segmentation, Retrieval and Deformation [47.94499636697971]
We present ShapeMatcher, a unified self-supervised learning framework for joint shape canonicalization, segmentation, retrieval and deformation.
The key insight of ShapeMaker is the simultaneous training of the four highly-associated processes: canonicalization, segmentation, retrieval, and deformation.
arXiv Detail & Related papers (2023-11-18T15:44:57Z) - Semantic-Aware Implicit Template Learning via Part Deformation
Consistency [18.63665468429503]
We propose a semantic-aware implicit template learning framework to enable semantically plausible deformation.
By leveraging semantic prior from a self-supervised feature extractor, we suggest local conditioning with novel semantic-aware deformation code.
Our experiments demonstrate the superiority of the proposed method over baselines in various tasks.
arXiv Detail & Related papers (2023-08-23T05:02:17Z) - Abdominal organ segmentation via deep diffeomorphic mesh deformations [5.4173776411667935]
Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
arXiv Detail & Related papers (2023-06-27T14:41:18Z) - Neural Shape Deformation Priors [14.14047635248036]
We present Neural Shape Deformation Priors, a novel method for shape manipulation.
We learn the deformation behavior based on the underlying geometric properties of a shape.
Our method can be applied to challenging deformations and generalizes well to unseen deformations.
arXiv Detail & Related papers (2022-10-11T17:03:25Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - SEG-MAT: 3D Shape Segmentation Using Medial Axis Transform [49.51977253452456]
We present an efficient method for 3D shape segmentation based on the medial axis transform (MAT) of the input shape.
Specifically, with the rich geometrical and structural information encoded in the MAT, we are able to identify the various types of junctions between different parts of a 3D shape.
Our method outperforms the state-of-the-art methods in terms of segmentation quality and is also one order of magnitude faster.
arXiv Detail & Related papers (2020-10-22T07:15:23Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z) - A Compact Spectral Descriptor for Shape Deformations [0.8268443804509721]
We propose a novel methodology to obtain a parameterization of a component's plastic deformation behavior under stress.
Existing parameterizations limit computational analysis to relatively simple deformations.
We propose a way to derive a compact descriptor of deformation behavior based on spectral mesh processing.
arXiv Detail & Related papers (2020-03-10T10:34:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.