Abdominal organ segmentation via deep diffeomorphic mesh deformations
- URL: http://arxiv.org/abs/2306.15515v2
- Date: Mon, 30 Oct 2023 13:48:50 GMT
- Title: Abdominal organ segmentation via deep diffeomorphic mesh deformations
- Authors: Fabian Bongratz, Anne-Marie Rickmann, Christian Wachinger
- Abstract summary: Abdominal organ segmentation from CT and MRI is an essential prerequisite for surgical planning and computer-aided navigation systems.
We employ template-based mesh reconstruction methods for joint liver, kidney, pancreas, and spleen segmentation.
The resulting method, UNetFlow, generalizes well to all four organs and can be easily fine-tuned on new data.
- Score: 5.4173776411667935
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Abdominal organ segmentation from CT and MRI is an essential prerequisite for
surgical planning and computer-aided navigation systems. It is challenging due
to the high variability in the shape, size, and position of abdominal organs.
Three-dimensional numeric representations of abdominal shapes with point-wise
correspondence to a template are further important for quantitative and
statistical analyses thereof. Recently, template-based surface extraction
methods have shown promising advances for direct mesh reconstruction from
volumetric scans. However, the generalization of these deep learning-based
approaches to different organs and datasets, a crucial property for deployment
in clinical environments, has not yet been assessed. We close this gap and
employ template-based mesh reconstruction methods for joint liver, kidney,
pancreas, and spleen segmentation. Our experiments on manually annotated CT and
MRI data reveal limited generalization capabilities of previous methods to
organs of different geometry and weak performance on small datasets. We
alleviate these issues with a novel deep diffeomorphic mesh-deformation
architecture and an improved training scheme. The resulting method, UNetFlow,
generalizes well to all four organs and can be easily fine-tuned on new data.
Moreover, we propose a simple registration-based post-processing that aligns
voxel and mesh outputs to boost segmentation accuracy.
Related papers
- Teaching AI the Anatomy Behind the Scan: Addressing Anatomical Flaws in Medical Image Segmentation with Learnable Prior [34.54360931760496]
Key anatomical features, such as the number of organs, their shapes and relative positions, are crucial for building a robust multi-organ segmentation model.
We introduce a novel architecture called the Anatomy-Informed Network (AIC-Net)
AIC-Net incorporates a learnable input termed "Anatomical Prior", which can be adapted to patient-specific anatomy.
arXiv Detail & Related papers (2024-03-27T10:46:24Z) - ReshapeIT: Reliable Shape Interaction with Implicit Template for Anatomical Structure Reconstruction [59.971808117043366]
ReShapeIT represents an anatomical structure with an implicit template field shared within the same category.
It ensures the implicit template field generates valid templates by strengthening the constraint of the correspondence between the instance shape and the template shape.
A template Interaction Module is introduced to reconstruct unseen shapes by interacting the valid template shapes with the instance-wise latent codes.
arXiv Detail & Related papers (2023-12-11T07:09:32Z) - Shape Matters: Detecting Vertebral Fractures Using Differentiable
Point-Based Shape Decoding [51.38395069380457]
Degenerative spinal pathologies are highly prevalent among the elderly population.
Timely diagnosis of osteoporotic fractures and other degenerative deformities facilitates proactive measures to mitigate the risk of severe back pain and disability.
In this study, we specifically explore the use of shape auto-encoders for vertebrae.
arXiv Detail & Related papers (2023-12-08T18:11:22Z) - AG-CRC: Anatomy-Guided Colorectal Cancer Segmentation in CT with
Imperfect Anatomical Knowledge [9.961742312147674]
We develop a novel Anatomy-Guided segmentation framework to exploit the auto-generated organ masks.
We extensively evaluate the proposed method on two CRC segmentation datasets.
arXiv Detail & Related papers (2023-10-07T03:22:06Z) - S3M: Scalable Statistical Shape Modeling through Unsupervised
Correspondences [91.48841778012782]
We propose an unsupervised method to simultaneously learn local and global shape structures across population anatomies.
Our pipeline significantly improves unsupervised correspondence estimation for SSMs compared to baseline methods.
Our method is robust enough to learn from noisy neural network predictions, potentially enabling scaling SSMs to larger patient populations.
arXiv Detail & Related papers (2023-04-15T09:39:52Z) - Orientation-Shared Convolution Representation for CT Metal Artifact
Learning [63.67718355820655]
During X-ray computed tomography (CT) scanning, metallic implants carrying with patients often lead to adverse artifacts.
Existing deep-learning-based methods have gained promising reconstruction performance.
We propose an orientation-shared convolution representation strategy to adapt the physical prior structures of artifacts.
arXiv Detail & Related papers (2022-12-26T13:56:12Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
In this paper, we propose a novel reliable multi-scale wavelet-enhanced transformer network.
We develop a novel segmentation backbone that integrates a wavelet-enhanced feature extractor network and a multi-scale transformer module.
Our proposed method achieves better segmentation accuracy with a high degree of reliability as compared to other state-of-the-art segmentation approaches.
arXiv Detail & Related papers (2022-12-01T07:32:56Z) - Unsupervised Domain Adaptation through Shape Modeling for Medical Image
Segmentation [23.045760366698634]
We aim at modeling shape explicitly and using it to help medical image segmentation.
Previous methods proposed Variational Autoencoder (VAE) based models to learn the distribution of shape for a particular organ.
We propose a new unsupervised domain adaptation pipeline based on a pseudo loss and a VAE reconstruction loss under a teacher-student learning paradigm.
arXiv Detail & Related papers (2022-07-06T09:16:42Z) - Body Part Regression for CT Images [0.0]
Self-supervised body part regression model for CT volumes is developed and trained on a heterogeneous collection of CT studies.
It is demonstrated how the algorithm can contribute to the robust and reliable transfer of medical models into the clinic.
arXiv Detail & Related papers (2021-10-18T10:03:42Z) - Contour Transformer Network for One-shot Segmentation of Anatomical
Structures [26.599337546171732]
We present Contour Transformer Network (CTN), a one-shot anatomy segmentation method with a naturally built-in human-in-the-loop mechanism.
On segmentation tasks of four different anatomies, we demonstrate that our one-shot learning method significantly outperforms non-learning-based methods.
With minimal human-in-the-loop editing feedback, the segmentation performance can be further improved to surpass the fully supervised methods.
arXiv Detail & Related papers (2020-12-02T19:42:18Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.