Transdisciplinary AI Observatory -- Retrospective Analyses and
Future-Oriented Contradistinctions
- URL: http://arxiv.org/abs/2012.02592v2
- Date: Mon, 7 Dec 2020 02:23:13 GMT
- Title: Transdisciplinary AI Observatory -- Retrospective Analyses and
Future-Oriented Contradistinctions
- Authors: Nadisha-Marie Aliman, Leon Kester, and Roman Yampolskiy
- Abstract summary: This paper motivates the need for an inherently transdisciplinary AI observatory approach.
Building on these AI observatory tools, we present near-term transdisciplinary guidelines for AI safety.
- Score: 22.968817032490996
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last years, AI safety gained international recognition in the light of
heterogeneous safety-critical and ethical issues that risk overshadowing the
broad beneficial impacts of AI. In this context, the implementation of AI
observatory endeavors represents one key research direction. This paper
motivates the need for an inherently transdisciplinary AI observatory approach
integrating diverse retrospective and counterfactual views. We delineate aims
and limitations while providing hands-on-advice utilizing concrete practical
examples. Distinguishing between unintentionally and intentionally triggered AI
risks with diverse socio-psycho-technological impacts, we exemplify a
retrospective descriptive analysis followed by a retrospective counterfactual
risk analysis. Building on these AI observatory tools, we present near-term
transdisciplinary guidelines for AI safety. As further contribution, we discuss
differentiated and tailored long-term directions through the lens of two
disparate modern AI safety paradigms. For simplicity, we refer to these two
different paradigms with the terms artificial stupidity (AS) and eternal
creativity (EC) respectively. While both AS and EC acknowledge the need for a
hybrid cognitive-affective approach to AI safety and overlap with regard to
many short-term considerations, they differ fundamentally in the nature of
multiple envisaged long-term solution patterns. By compiling relevant
underlying contradistinctions, we aim to provide future-oriented incentives for
constructive dialectics in practical and theoretical AI safety research.
Related papers
- AI Alignment through Reinforcement Learning from Human Feedback? Contradictions and Limitations [0.2106667480549292]
We show the shortcomings of the broadly pursued alignment goals of honesty, harmlessness, and helpfulness.
We highlight tensions and contradictions inherent in the goals of RLxF.
We conclude by urging researchers and practitioners alike to critically assess the sociotechnical ramifications of RLxF.
arXiv Detail & Related papers (2024-06-26T13:42:13Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - AI Risk Management Should Incorporate Both Safety and Security [185.68738503122114]
We argue that stakeholders in AI risk management should be aware of the nuances, synergies, and interplay between safety and security.
We introduce a unified reference framework to clarify the differences and interplay between AI safety and AI security.
arXiv Detail & Related papers (2024-05-29T21:00:47Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
General purpose AI seems to have lowered the barriers for the public to use AI and harness its power.
We introduce PARTICIP-AI, a framework for laypeople to speculate and assess AI use cases and their impacts.
arXiv Detail & Related papers (2024-03-21T19:12:37Z) - Responsible Artificial Intelligence: A Structured Literature Review [0.0]
The EU has recently issued several publications emphasizing the necessity of trust in AI.
This highlights the urgent need for international regulation.
This paper introduces a comprehensive and, to our knowledge, the first unified definition of responsible AI.
arXiv Detail & Related papers (2024-03-11T17:01:13Z) - Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation [61.77881142275982]
This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
arXiv Detail & Related papers (2022-06-08T12:32:08Z) - Arguments about Highly Reliable Agent Designs as a Useful Path to
Artificial Intelligence Safety [0.0]
Highly Reliable Agent Designs (HRAD) is one of the most controversial and ambitious approaches.
We have titled the arguments (1) incidental utility, (2) deconfusion, (3) precise specification, and (4) prediction.
We have explained the assumptions and claims based on a review of published and informal literature, along with experts who have stated positions on the topic.
arXiv Detail & Related papers (2022-01-09T07:42:37Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - AI Research Considerations for Human Existential Safety (ARCHES) [6.40842967242078]
In negative terms, we ask what existential risks humanity might face from AI development in the next century.
Key property of hypothetical AI technologies is introduced, called emphprepotence
A set of auxrefdirtot contemporary research directions are then examined for their potential benefit to existential safety.
arXiv Detail & Related papers (2020-05-30T02:05:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.