Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation
- URL: http://arxiv.org/abs/2207.01510v1
- Date: Wed, 8 Jun 2022 12:32:08 GMT
- Title: Fairness in Agreement With European Values: An Interdisciplinary
Perspective on AI Regulation
- Authors: Alejandra Bringas Colmenarejo, Luca Nannini, Alisa Rieger, Kristen M.
Scott, Xuan Zhao, Gourab K. Patro, Gjergji Kasneci, Katharina Kinder-Kurlanda
- Abstract summary: This interdisciplinary position paper considers various concerns surrounding fairness and discrimination in AI, and discusses how AI regulations address them.
We first look at AI and fairness through the lenses of law, (AI) industry, sociotechnology, and (moral) philosophy, and present various perspectives.
We identify and propose the roles AI Regulation should take to make the endeavor of the AI Act a success in terms of AI fairness concerns.
- Score: 61.77881142275982
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With increasing digitalization, Artificial Intelligence (AI) is becoming
ubiquitous. AI-based systems to identify, optimize, automate, and scale
solutions to complex economic and societal problems are being proposed and
implemented. This has motivated regulation efforts, including the Proposal of
an EU AI Act. This interdisciplinary position paper considers various concerns
surrounding fairness and discrimination in AI, and discusses how AI regulations
address them, focusing on (but not limited to) the Proposal. We first look at
AI and fairness through the lenses of law, (AI) industry, sociotechnology, and
(moral) philosophy, and present various perspectives. Then, we map these
perspectives along three axes of interests: (i) Standardization vs.
Localization, (ii) Utilitarianism vs. Egalitarianism, and (iii) Consequential
vs. Deontological ethics which leads us to identify a pattern of common
arguments and tensions between these axes. Positioning the discussion within
the axes of interest and with a focus on reconciling the key tensions, we
identify and propose the roles AI Regulation should take to make the endeavor
of the AI Act a success in terms of AI fairness concerns.
Related papers
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
This paper critically examines the European Union's Artificial Intelligence Act (EU AI Act)
Uses insights from Alignment Theory (AT) research, which focuses on the potential pitfalls of technical alignment in Artificial Intelligence.
As we apply these concepts to the EU AI Act, we uncover potential vulnerabilities and areas for improvement in the regulation.
arXiv Detail & Related papers (2024-10-10T17:38:38Z) - Towards Bidirectional Human-AI Alignment: A Systematic Review for Clarifications, Framework, and Future Directions [101.67121669727354]
Recent advancements in AI have highlighted the importance of guiding AI systems towards the intended goals, ethical principles, and values of individuals and groups, a concept broadly recognized as alignment.
The lack of clarified definitions and scopes of human-AI alignment poses a significant obstacle, hampering collaborative efforts across research domains to achieve this alignment.
We introduce a systematic review of over 400 papers published between 2019 and January 2024, spanning multiple domains such as Human-Computer Interaction (HCI), Natural Language Processing (NLP), Machine Learning (ML)
arXiv Detail & Related papers (2024-06-13T16:03:25Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
"Responsible AI" emphasizes the critical nature of addressing biases within the development of a corporate culture.
This thesis is structured around three fundamental pillars: understanding bias, mitigating bias, and accounting for bias.
In line with open-source principles, we have released Bias On Demand and FairView as accessible Python packages.
arXiv Detail & Related papers (2024-01-13T14:07:09Z) - Beneficent Intelligence: A Capability Approach to Modeling Benefit,
Assistance, and Associated Moral Failures through AI Systems [12.239090962956043]
The prevailing discourse around AI ethics lacks the language and formalism necessary to capture the diverse ethical concerns that emerge when AI systems interact with individuals.
We present a framework formalizing a network of ethical concepts and entitlements necessary for AI systems to confer meaningful benefit or assistance to stakeholders.
arXiv Detail & Related papers (2023-08-01T22:38:14Z) - Connecting the Dots in Trustworthy Artificial Intelligence: From AI
Principles, Ethics, and Key Requirements to Responsible AI Systems and
Regulation [22.921683578188645]
We argue that attaining truly trustworthy AI concerns the trustworthiness of all processes and actors that are part of the system's life cycle.
A more holistic vision contemplates four essential axes: the global principles for ethical use and development of AI-based systems, a philosophical take on AI ethics, and a risk-based approach to AI regulation.
Our multidisciplinary vision of trustworthy AI culminates in a debate on the diverging views published lately about the future of AI.
arXiv Detail & Related papers (2023-05-02T09:49:53Z) - Artificial intelligence in government: Concepts, standards, and a
unified framework [0.0]
Recent advances in artificial intelligence (AI) hold the promise of transforming government.
It is critical that new AI systems behave in alignment with the normative expectations of society.
arXiv Detail & Related papers (2022-10-31T10:57:20Z) - Relational Artificial Intelligence [5.5586788751870175]
Even though AI is traditionally associated with rational decision making, understanding and shaping the societal impact of AI in all its facets requires a relational perspective.
A rational approach to AI, where computational algorithms drive decision making independent of human intervention, has shown to result in bias and exclusion.
A relational approach, that focus on the relational nature of things, is needed to deal with the ethical, legal, societal, cultural, and environmental implications of AI.
arXiv Detail & Related papers (2022-02-04T15:29:57Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
In recent years, there has been an increased emphasis on understanding and mitigating adverse impacts of artificial intelligence (AI) technologies on society.
A significant challenge in the design of ethical AI systems is that there are multiple stakeholders in the AI pipeline, each with their own set of constraints and interests.
This position paper outlines some potential ways in which generative artworks can play this role by serving as accessible and powerful educational tools.
arXiv Detail & Related papers (2021-06-25T22:31:55Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
This paper proposes a comprehensive analysis of existing concepts coming from different disciplines tackling the notion of intelligence.
The aim is to identify shared notions or discrepancies to consider for qualifying AI systems.
arXiv Detail & Related papers (2021-05-07T12:01:31Z) - Artificial Intelligence, Values and Alignment [2.28438857884398]
normative and technical aspects of the AI alignment problem are interrelated.
It is important to be clear about the goal of alignment.
The central challenge for theorists is not to identify 'true' moral principles for AI.
arXiv Detail & Related papers (2020-01-13T10:32:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.