Global Context Aware RCNN for Object Detection
- URL: http://arxiv.org/abs/2012.02637v1
- Date: Fri, 4 Dec 2020 14:56:46 GMT
- Title: Global Context Aware RCNN for Object Detection
- Authors: Wenchao Zhang, Chong Fu, Haoyu Xie, Mai Zhu, Ming Tie, Junxin Chen
- Abstract summary: We propose a novel end-to-end trainable framework, called Global Context Aware (GCA) RCNN.
The core component of GCA framework is a context aware mechanism, in which both global feature pyramid and attention strategies are used for feature extraction and feature refinement.
In the end, we also present a lightweight version of our method, which only slightly increases model complexity and computational burden.
- Score: 1.1939762265857436
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RoIPool/RoIAlign is an indispensable process for the typical two-stage object
detection algorithm, it is used to rescale the object proposal cropped from the
feature pyramid to generate a fixed size feature map. However, these cropped
feature maps of local receptive fields will heavily lose global context
information. To tackle this problem, we propose a novel end-to-end trainable
framework, called Global Context Aware (GCA) RCNN, aiming at assisting the
neural network in strengthening the spatial correlation between the background
and the foreground by fusing global context information. The core component of
our GCA framework is a context aware mechanism, in which both global feature
pyramid and attention strategies are used for feature extraction and feature
refinement, respectively. Specifically, we leverage the dense connection to
improve the information flow of the global context at different stages in the
top-down process of FPN, and further use the attention mechanism to refine the
global context at each level in the feature pyramid. In the end, we also
present a lightweight version of our method, which only slightly increases
model complexity and computational burden. Experimental results on COCO
benchmark dataset demonstrate the significant advantages of our approach.
Related papers
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - Localization, balance and affinity: a stronger multifaceted collaborative salient object detector in remote sensing images [24.06927394483275]
We propose a stronger multifaceted collaborative salient object detector in ORSIs, termed LBA-MCNet.
The network focuses on accurately locating targets, balancing detailed features, and modeling image-level global context information.
arXiv Detail & Related papers (2024-10-31T14:50:48Z) - Global Feature Pyramid Network [1.2473780585666772]
The visual feature pyramid has proven its effectiveness and efficiency in target detection tasks.
Current methodologies tend to overly emphasize inter-layer feature interaction, neglecting the crucial aspect of intra-layer feature adjustment.
arXiv Detail & Related papers (2023-12-18T14:30:41Z) - Centralized Feature Pyramid for Object Detection [53.501796194901964]
Visual feature pyramid has shown its superiority in both effectiveness and efficiency in a wide range of applications.
In this paper, we propose a OLO Feature Pyramid for object detection, which is based on a globally explicit centralized feature regulation.
arXiv Detail & Related papers (2022-10-05T08:32:54Z) - DenseGAP: Graph-Structured Dense Correspondence Learning with Anchor
Points [15.953570826460869]
Establishing dense correspondence between two images is a fundamental computer vision problem.
We introduce DenseGAP, a new solution for efficient Dense correspondence learning with a Graph-structured neural network conditioned on Anchor Points.
Our method advances the state-of-the-art of correspondence learning on most benchmarks.
arXiv Detail & Related papers (2021-12-13T18:59:30Z) - Video Salient Object Detection via Adaptive Local-Global Refinement [7.723369608197167]
Video salient object detection (VSOD) is an important task in many vision applications.
We propose an adaptive local-global refinement framework for VSOD.
We show that our weighting methodology can further exploit the feature correlations, thus driving the network to learn more discriminative feature representation.
arXiv Detail & Related papers (2021-04-29T14:14:11Z) - Unveiling the Potential of Structure-Preserving for Weakly Supervised
Object Localization [71.79436685992128]
We propose a two-stage approach, termed structure-preserving activation (SPA), towards fully leveraging the structure information incorporated in convolutional features for WSOL.
In the first stage, a restricted activation module (RAM) is designed to alleviate the structure-missing issue caused by the classification network.
In the second stage, we propose a post-process approach, termed self-correlation map generating (SCG) module to obtain structure-preserving localization maps.
arXiv Detail & Related papers (2021-03-08T03:04:14Z) - Learning to Predict Context-adaptive Convolution for Semantic
Segmentation [66.27139797427147]
Long-range contextual information is essential for achieving high-performance semantic segmentation.
We propose a Context-adaptive Convolution Network (CaC-Net) to predict a spatially-varying feature weighting vector.
Our CaC-Net achieves superior segmentation performance on three public datasets.
arXiv Detail & Related papers (2020-04-17T13:09:17Z) - Global Context-Aware Progressive Aggregation Network for Salient Object
Detection [117.943116761278]
We propose a novel network named GCPANet to integrate low-level appearance features, high-level semantic features, and global context features.
We show that the proposed approach outperforms the state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2020-03-02T04:26:10Z) - Dense Residual Network: Enhancing Global Dense Feature Flow for
Character Recognition [75.4027660840568]
This paper explores how to enhance the local and global dense feature flow by exploiting hierarchical features fully from all the convolution layers.
Technically, we propose an efficient and effective CNN framework, i.e., Fast Dense Residual Network (FDRN) for text recognition.
arXiv Detail & Related papers (2020-01-23T06:55:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.