論文の概要: Predicting Emotions Perceived from Sounds
- arxiv url: http://arxiv.org/abs/2012.02643v1
- Date: Fri, 4 Dec 2020 15:01:59 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 20:31:22.931832
- Title: Predicting Emotions Perceived from Sounds
- Title(参考訳): 音から知覚される感情の予測
- Authors: Faranak Abri, Luis Felipe Guti\'errez, Akbar Siami Namin, David R. W.
Sears, Keith S. Jones
- Abstract要約: 音化とは、音を通してユーザとデータやイベントを通信する科学である。
本稿では、いくつかの主流および従来型の機械学習アルゴリズムを開発する実験を行う。
知覚された感情を高い精度で予測することが可能である。
- 参考スコア(独自算出の注目度): 2.9398911304923447
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sonification is the science of communication of data and events to users
through sounds. Auditory icons, earcons, and speech are the common auditory
display schemes utilized in sonification, or more specifically in the use of
audio to convey information. Once the captured data are perceived, their
meanings, and more importantly, intentions can be interpreted more easily and
thus can be employed as a complement to visualization techniques. Through
auditory perception it is possible to convey information related to temporal,
spatial, or some other context-oriented information. An important research
question is whether the emotions perceived from these auditory icons or earcons
are predictable in order to build an automated sonification platform. This
paper conducts an experiment through which several mainstream and conventional
machine learning algorithms are developed to study the prediction of emotions
perceived from sounds. To do so, the key features of sounds are captured and
then are modeled using machine learning algorithms using feature reduction
techniques. We observe that it is possible to predict perceived emotions with
high accuracy. In particular, the regression based on Random Forest
demonstrated its superiority compared to other machine learning algorithms.
- Abstract(参考訳): 音化とは、音を通してユーザとデータやイベントを通信する科学である。
聴覚アイコン、耳栓、音声は、音化に使用される一般的な聴覚表示方式であり、より具体的には情報伝達に音声を使用する。
キャプチャーされたデータが認識されると、その意味、さらに重要なことは、意図をより容易に解釈することができ、可視化技術の補完として利用することができる。
聴覚知覚を通して、時間的、空間的、または他の文脈指向の情報を伝えることができる。
重要な研究課題は、これらの聴覚アイコンから知覚される感情が、自動音化プラットフォームを構築するために予測可能であるかどうかである。
本稿では,音から知覚される感情の予測を行うために,主流および従来の機械学習アルゴリズムを複数開発する実験を行う。
そのため、音の主な特徴を捕捉し、特徴量削減技術を用いて機械学習アルゴリズムを用いてモデル化する。
知覚された感情を高い精度で予測することが可能である。
特にランダムフォレストに基づく回帰は、他の機械学習アルゴリズムと比較して優位性を示した。
関連論文リスト
- Speech Emotion Recognition Using CNN and Its Use Case in Digital Healthcare [0.0]
人間の感情と感情状態を音声から識別するプロセスは、音声感情認識(SER)として知られている。
私の研究は、畳み込みニューラルネットワーク(CNN)を使って、音声録音と感情を区別し、異なる感情の範囲に応じてラベル付けすることを目指しています。
私は、機械学習手法を用いて、供給された音声ファイルから感情を識別する機械学習モデルを開発した。
論文 参考訳(メタデータ) (2024-06-15T21:33:03Z) - Speech and Text-Based Emotion Recognizer [0.9168634432094885]
我々は、音声感情認識のための公開データセットからバランスの取れたコーパスを構築する。
最良システムはマルチモーダル音声とテキストベースモデルであり,UA(Unweighed Accuracy)+WA(Weighed Accuracy)を119.66のベースラインアルゴリズムと比較して157.57の性能を提供する。
論文 参考訳(メタデータ) (2023-12-10T05:17:39Z) - Toward a realistic model of speech processing in the brain with
self-supervised learning [67.7130239674153]
生波形で訓練された自己教師型アルゴリズムは有望な候補である。
We show that Wav2Vec 2.0 learns brain-like representations with little as 600 hours of unlabelled speech。
論文 参考訳(メタデータ) (2022-06-03T17:01:46Z) - Audio-Visual Speech Codecs: Rethinking Audio-Visual Speech Enhancement
by Re-Synthesis [67.73554826428762]
本稿では,AR/VRにおける高忠実度通信のための新しい音声・視覚音声強調フレームワークを提案する。
提案手法は音声・視覚音声の手がかりを利用してニューラル音声のコードを生成することで,ノイズ信号からクリーンでリアルな音声を効率的に合成する。
論文 参考訳(メタデータ) (2022-03-31T17:57:10Z) - Binaural SoundNet: Predicting Semantics, Depth and Motion with Binaural
Sounds [118.54908665440826]
人間は視覚的および/または聴覚的手がかりを用いて、オブジェクトを頑健に認識し、ローカライズすることができる。
この研究は、純粋に音に基づくシーン理解のためのアプローチを開発する。
視覚的および音声的手がかりの共存は、監督伝達に活用される。
論文 参考訳(メタデータ) (2021-09-06T22:24:00Z) - Learning Audio-Visual Dereverberation [87.52880019747435]
環境中の表面や物体を反射する音声からの残響は、人間の知覚の質を低下させるだけでなく、自動音声認識の精度にも深刻な影響を及ぼす。
我々の考えは、音声・視覚的観察から音声を除去することである。
そこで我々は,観測音と映像シーンの両方に基づいて残響を除去することを学ぶエンドツーエンドアプローチである,視覚インフォームド・デバーベレーション・オブ・オーディオ(VIDA)を紹介した。
論文 参考訳(メタデータ) (2021-06-14T20:01:24Z) - Emotion Recognition of the Singing Voice: Toward a Real-Time Analysis
Tool for Singers [0.0]
現在の計算感情研究は、感情が数学的に知覚される方法を分析するために音響特性を適用することに焦点を当てている。
本稿は,関連する研究の知見を反映し,拡張し,この目標に向けての一歩を踏み出す。
論文 参考訳(メタデータ) (2021-05-01T05:47:15Z) - An Overview of Deep-Learning-Based Audio-Visual Speech Enhancement and
Separation [57.68765353264689]
音声強調と音声分離は関連する2つの課題である。
伝統的に、これらのタスクは信号処理と機械学習技術を使って取り組まれてきた。
ディープラーニングは強力なパフォーマンスを達成するために利用されています。
論文 参考訳(メタデータ) (2020-08-21T17:24:09Z) - Semantic Object Prediction and Spatial Sound Super-Resolution with
Binaural Sounds [106.87299276189458]
人間は視覚的および聴覚的手がかりを統合することで、オブジェクトを強く認識し、ローカライズすることができる。
この研究は、純粋に音に基づく、音生成対象の密接なセマンティックラベリングのためのアプローチを開発する。
論文 参考訳(メタデータ) (2020-03-09T15:49:01Z) - Emotion Recognition System from Speech and Visual Information based on
Convolutional Neural Networks [6.676572642463495]
本研究では,感情を高精度かつリアルタイムに認識できるシステムを提案する。
音声認識システムの精度を高めるため、音声データも分析し、両情報源から得られる情報を融合する。
論文 参考訳(メタデータ) (2020-02-29T22:09:46Z) - Unsupervised Learning of Audio Perception for Robotics Applications:
Learning to Project Data to T-SNE/UMAP space [2.8935588665357077]
本論文は,接地構造データにアクセスすることなく,触覚の知覚を構築するための重要なアイデアを基礎にしている。
我々は、古典的な信号処理のアイデアを活用して、高い精度で興味のある音の大量のデータを得る方法を示す。
論文 参考訳(メタデータ) (2020-02-10T20:33:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。