論文の概要: Bayesian Active Learning for Wearable Stress and Affect Detection
- arxiv url: http://arxiv.org/abs/2012.02702v1
- Date: Fri, 4 Dec 2020 16:19:37 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 20:49:27.339868
- Title: Bayesian Active Learning for Wearable Stress and Affect Detection
- Title(参考訳): ウェアラブルストレスに対するベイズ能動学習と影響検出
- Authors: Abhijith Ragav, Gautham Krishna Gudur
- Abstract要約: デバイス上での深層学習アルゴリズムによるストレス検出は、広汎なコンピューティングの進歩により増加傾向にある。
本稿では,ベイズニューラルネットワークの近似によるモデル不確実性を表現可能なフレームワークを提案する。
提案手法は, 提案手法により, 推定時の効率を著しく向上し, 獲得したプール点数がかなり少なくなる。
- 参考スコア(独自算出の注目度): 0.7106986689736827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent past, psychological stress has been increasingly observed in
humans, and early detection is crucial to prevent health risks. Stress
detection using on-device deep learning algorithms has been on the rise owing
to advancements in pervasive computing. However, an important challenge that
needs to be addressed is handling unlabeled data in real-time via suitable
ground truthing techniques (like Active Learning), which should help establish
affective states (labels) while also selecting only the most informative data
points to query from an oracle. In this paper, we propose a framework with
capabilities to represent model uncertainties through approximations in
Bayesian Neural Networks using Monte-Carlo (MC) Dropout. This is combined with
suitable acquisition functions for active learning. Empirical results on a
popular stress and affect detection dataset experimented on a Raspberry Pi 2
indicate that our proposed framework achieves a considerable efficiency boost
during inference, with a substantially low number of acquired pool points
during active learning across various acquisition functions. Variation Ratios
achieves an accuracy of 90.38% which is comparable to the maximum test accuracy
achieved while training on about 40% lesser data.
- Abstract(参考訳): 近年,ヒトでは心理的ストレスが観察され,早期発見は健康リスクの予防に不可欠である。
デバイス上での深層学習アルゴリズムによるストレス検出は、広汎なコンピューティングの進歩により増加傾向にある。
しかし、対処すべき重要な課題は、適切な地上の真理化技術(アクティブラーニングなど)を通じて、ラベルのないデータをリアルタイムで処理することであり、これは、感情的な状態(ラベル)を確立するのに役立つと同時に、オラクルからクエリする最も情報に富むデータポイントのみを選択するのに役立つ。
本稿では,モンテカルロ(mc)ドロップアウトを用いたベイジアンニューラルネットワークにおける近似によるモデル不確実性を表現する枠組みを提案する。
これはアクティブラーニングに適した獲得関数と組み合わせられる。
raspberry pi 2で実験された一般的なストレス・インパクト検出データセットを用いた実験結果から,提案フレームワークは,様々な獲得関数を横断するアクティブラーニングにおいて,取得したプールポイントの数がかなり少なく,推論時の効率が大幅に向上することが示唆された。
変動比は90.38%の精度を達成し、約40%少ないデータでトレーニング中に達成されるテストの最大精度に匹敵する。
関連論文リスト
- NTKCPL: Active Learning on Top of Self-Supervised Model by Estimating
True Coverage [3.4806267677524896]
ニューラル・タンジェント・カーネル・クラスタリング・プシュード・ラベル(NTKCPL)の新しいアクティブ・ラーニング・ストラテジーを提案する。
擬似ラベルとNTK近似を用いたモデル予測に基づいて経験的リスクを推定する。
提案手法を5つのデータセット上で検証し,ほとんどの場合,ベースライン法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-06-07T01:43:47Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
選択予測は、不確実な場合の予測を棄却する信頼性のあるモデルを学ぶことを目的としている。
アクティブラーニングは、最も有意義な例を問うことで、ラベリングの全体、すなわち人間の依存度を下げることを目的としている。
本研究では,移動対象領域からより情報のあるサンプルを検索することを目的とした,新たな学習パラダイムである能動的選択予測を導入する。
論文 参考訳(メタデータ) (2023-04-07T23:51:07Z) - Responsible Active Learning via Human-in-the-loop Peer Study [88.01358655203441]
我々は,データプライバシを同時に保持し,モデルの安定性を向上させるために,Pear Study Learning (PSL) と呼ばれる責任あるアクティブラーニング手法を提案する。
まず,クラウドサイドのタスク学習者(教師)から未学習データを分離する。
トレーニング中、タスク学習者は軽量なアクティブ学習者に指示し、アクティブサンプリング基準に対するフィードバックを提供する。
論文 参考訳(メタデータ) (2022-11-24T13:18:27Z) - ALLSH: Active Learning Guided by Local Sensitivity and Hardness [98.61023158378407]
本稿では,局所感度と硬度認識獲得機能を備えたラベル付きサンプルの検索を提案する。
本手法は,様々な分類タスクにおいてよく用いられるアクティブラーニング戦略よりも一貫した利得が得られる。
論文 参考訳(メタデータ) (2022-05-10T15:39:11Z) - Towards Reducing Labeling Cost in Deep Object Detection [61.010693873330446]
本稿では,検知器の不確実性と頑健性の両方を考慮した,アクティブラーニングのための統一的なフレームワークを提案する。
提案手法は, 確率分布のドリフトを抑えながら, 極めて確実な予測を擬似ラベル化することができる。
論文 参考訳(メタデータ) (2021-06-22T16:53:09Z) - ReLearn: A Robust Machine Learning Framework in Presence of Missing Data
for Multimodal Stress Detection from Physiological Signals [5.042598205771715]
マルチモーダル生理学的信号から抽出したバイオマーカーからのストレス検出のための堅牢な機械学習フレームワークであるReLearnを提案する。
ReLearnは、トレーニングと推論フェーズの両方において、欠落したデータと外れ値に効果的に対処する。
提案手法は,50%以上のサンプルが欠落している場合でも,86.8%のクロスバリデーション精度が得られることを示す。
論文 参考訳(メタデータ) (2021-04-29T11:53:01Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - Low-Regret Active learning [64.36270166907788]
トレーニングに最も有用なラベル付きデータポイントを識別するオンライン学習アルゴリズムを開発した。
私たちの仕事の中心は、予測可能な(簡単な)インスタンスの低い後悔を達成するために調整された睡眠専門家のための効率的なアルゴリズムです。
論文 参考訳(メタデータ) (2021-04-06T22:53:45Z) - Efficacy of Bayesian Neural Networks in Active Learning [11.609770399591516]
ベイズニューラルネットワークは、アンサンブルに基づく不確実性を捕捉する技術よりも効率的であることを示す。
また,近年,モンテカルロのドロップアウトよりも効果的であることが判明したアンサンブル技法の重要な欠点も明らかにした。
論文 参考訳(メタデータ) (2021-04-02T06:02:11Z) - Ask-n-Learn: Active Learning via Reliable Gradient Representations for
Image Classification [29.43017692274488]
深い予測モデルは、ラベル付きトレーニングデータという形で人間の監督に依存する。
Ask-n-Learnは,各アルゴリズムで推定されたペスドラベルを用いて得られる勾配埋め込みに基づく能動的学習手法である。
論文 参考訳(メタデータ) (2020-09-30T05:19:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。