Learning Equivariant Representations
- URL: http://arxiv.org/abs/2012.02771v1
- Date: Fri, 4 Dec 2020 18:46:17 GMT
- Title: Learning Equivariant Representations
- Authors: Carlos Esteves
- Abstract summary: Convolutional neural networks (CNNs) are successful examples of this principle.
We propose equivariant models for different transformations defined by groups of symmetries.
These models leverage symmetries in the data to reduce sample and model complexity and improve generalization performance.
- Score: 10.745691354609738
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: State-of-the-art deep learning systems often require large amounts of data
and computation. For this reason, leveraging known or unknown structure of the
data is paramount. Convolutional neural networks (CNNs) are successful examples
of this principle, their defining characteristic being the shift-equivariance.
By sliding a filter over the input, when the input shifts, the response shifts
by the same amount, exploiting the structure of natural images where semantic
content is independent of absolute pixel positions. This property is essential
to the success of CNNs in audio, image and video recognition tasks. In this
thesis, we extend equivariance to other kinds of transformations, such as
rotation and scaling. We propose equivariant models for different
transformations defined by groups of symmetries. The main contributions are (i)
polar transformer networks, achieving equivariance to the group of similarities
on the plane, (ii) equivariant multi-view networks, achieving equivariance to
the group of symmetries of the icosahedron, (iii) spherical CNNs, achieving
equivariance to the continuous 3D rotation group, (iv) cross-domain image
embeddings, achieving equivariance to 3D rotations for 2D inputs, and (v)
spin-weighted spherical CNNs, generalizing the spherical CNNs and achieving
equivariance to 3D rotations for spherical vector fields. Applications include
image classification, 3D shape classification and retrieval, panoramic image
classification and segmentation, shape alignment and pose estimation. What
these models have in common is that they leverage symmetries in the data to
reduce sample and model complexity and improve generalization performance. The
advantages are more significant on (but not limited to) challenging tasks where
data is limited or input perturbations such as arbitrary rotations are present.
Related papers
- 3D Equivariant Pose Regression via Direct Wigner-D Harmonics Prediction [50.07071392673984]
Existing methods learn 3D rotations parametrized in the spatial domain using angles or quaternions.
We propose a frequency-domain approach that directly predicts Wigner-D coefficients for 3D rotation regression.
Our method achieves state-of-the-art results on benchmarks such as ModelNet10-SO(3) and PASCAL3D+.
arXiv Detail & Related papers (2024-11-01T12:50:38Z) - Moving Frame Net: SE(3)-Equivariant Network for Volumes [0.0]
A rotation and translation equivariant neural network for image data was proposed based on the moving frames approach.
We significantly improve that approach by reducing the computation of moving frames to only one, at the input stage.
Our trained model overperforms the benchmarks in the medical volume classification of most of the tested datasets from MedMNIST3D.
arXiv Detail & Related papers (2022-11-07T10:25:38Z) - PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs [69.85869748832127]
In this work, we employ partial differential operators (PDOs) to model 3D filters, and derive general steerable 3D CNNs called PDO-s3DCNNs.
We prove that the equivariant filters are subject to linear constraints, which can be solved efficiently under various conditions.
arXiv Detail & Related papers (2022-08-07T13:37:29Z) - Quantised Transforming Auto-Encoders: Achieving Equivariance to
Arbitrary Transformations in Deep Networks [23.673155102696338]
Convolutional Neural Networks (CNNs) are equivariant to image translation.
We propose an auto-encoder architecture whose embedding obeys an arbitrary set of equivariance relations simultaneously.
We demonstrate results of successful re-rendering of transformed versions of input images on several datasets.
arXiv Detail & Related papers (2021-11-25T02:26:38Z) - Deformation Robust Roto-Scale-Translation Equivariant CNNs [10.44236628142169]
Group-equivariant convolutional neural networks (G-CNNs) achieve significantly improved generalization performance with intrinsic symmetry.
General theory and practical implementation of G-CNNs have been studied for planar images under either rotation or scaling transformation.
arXiv Detail & Related papers (2021-11-22T03:58:24Z) - Training or Architecture? How to Incorporate Invariance in Neural
Networks [14.162739081163444]
We propose a method for provably invariant network architectures with respect to group actions.
In a nutshell, we intend to 'undo' any possible transformation before feeding the data into the actual network.
We analyze properties of such approaches, extend them to equivariant networks, and demonstrate their advantages in terms of robustness as well as computational efficiency in several numerical examples.
arXiv Detail & Related papers (2021-06-18T10:31:00Z) - SNARF: Differentiable Forward Skinning for Animating Non-Rigid Neural
Implicit Shapes [117.76767853430243]
We introduce SNARF, which combines the advantages of linear blend skinning for polygonal meshes with neural implicit surfaces.
We propose a forward skinning model that finds all canonical correspondences of any deformed point using iterative root finding.
Compared to state-of-the-art neural implicit representations, our approach generalizes better to unseen poses while preserving accuracy.
arXiv Detail & Related papers (2021-04-08T17:54:59Z) - Adjoint Rigid Transform Network: Task-conditioned Alignment of 3D Shapes [86.2129580231191]
Adjoint Rigid Transform (ART) Network is a neural module which can be integrated with a variety of 3D networks.
ART learns to rotate input shapes to a learned canonical orientation, which is crucial for a lot of tasks.
We will release our code and pre-trained models for further research.
arXiv Detail & Related papers (2021-02-01T20:58:45Z) - Spin-Weighted Spherical CNNs [58.013031812072356]
We present a new type of spherical CNN that allows anisotropic filters in an efficient way, without ever leaving the sphere domain.
The key idea is to consider spin-weighted spherical functions, which were introduced in physics in the study of gravitational waves.
Our method outperforms previous methods on tasks like classification of spherical images, classification of 3D shapes and semantic segmentation of spherical panoramas.
arXiv Detail & Related papers (2020-06-18T17:57:21Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.