Moment kernels: a simple and scalable approach for equivariance to rotations and reflections in deep convolutional networks
- URL: http://arxiv.org/abs/2505.21736v1
- Date: Tue, 27 May 2025 20:27:00 GMT
- Title: Moment kernels: a simple and scalable approach for equivariance to rotations and reflections in deep convolutional networks
- Authors: Zachary Schlamowitz, Andrew Bennecke, Daniel J. Tward,
- Abstract summary: We show that the same equivariance can be achieved using a simple form of convolution kernels.<n>We implement equivariant neural networks using standard convolution modules.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The principle of translation equivariance (if an input image is translated an output image should be translated by the same amount), led to the development of convolutional neural networks that revolutionized machine vision. Other symmetries, like rotations and reflections, play a similarly critical role, especially in biomedical image analysis, but exploiting these symmetries has not seen wide adoption. We hypothesize that this is partially due to the mathematical complexity of methods used to exploit these symmetries, which often rely on representation theory, a bespoke concept in differential geometry and group theory. In this work, we show that the same equivariance can be achieved using a simple form of convolution kernels that we call ``moment kernels,'' and prove that all equivariant kernels must take this form. These are a set of radially symmetric functions of a spatial position $x$, multiplied by powers of the components of $x$ or the identity matrix. We implement equivariant neural networks using standard convolution modules, and provide architectures to execute several biomedical image analysis tasks that depend on equivariance principles: classification (outputs are invariant under orthogonal transforms), 3D image registration (outputs transform like a vector), and cell segmentation (quadratic forms defining ellipses transform like a matrix).
Related papers
- Generalized Linear Mode Connectivity for Transformers [87.32299363530996]
A striking phenomenon is linear mode connectivity (LMC), where independently trained models can be connected by low- or zero-loss paths.<n>Prior work has predominantly focused on neuron re-ordering through permutations, but such approaches are limited in scope.<n>We introduce a unified framework that captures four symmetry classes: permutations, semi-permutations, transformations, and general invertible maps.<n>This generalization enables, for the first time, the discovery of low- and zero-barrier linear paths between independently trained Vision Transformers and GPT-2 models.
arXiv Detail & Related papers (2025-06-28T01:46:36Z) - Improving Equivariant Networks with Probabilistic Symmetry Breaking [9.164167226137664]
Equivariant networks encode known symmetries into neural networks, often enhancing generalizations.<n>This poses an important problem, both (1) for prediction tasks on domains where self-symmetries are common, and (2) for generative models, which must break symmetries in order to reconstruct from highly symmetric latent spaces.<n>We present novel theoretical results that establish sufficient conditions for representing such distributions.
arXiv Detail & Related papers (2025-03-27T21:04:49Z) - Group Crosscoders for Mechanistic Analysis of Symmetry [0.0]
Group crosscoders systematically discover and analyse symmetrical features in neural networks.
We show that group crosscoders can provide systematic insights into how neural networks represent symmetry.
arXiv Detail & Related papers (2024-10-31T17:47:01Z) - Unsupervised Representation Learning from Sparse Transformation Analysis [79.94858534887801]
We propose to learn representations from sequence data by factorizing the transformations of the latent variables into sparse components.
Input data are first encoded as distributions of latent activations and subsequently transformed using a probability flow model.
arXiv Detail & Related papers (2024-10-07T23:53:25Z) - Deep Learning Symmetries and Their Lie Groups, Algebras, and Subalgebras
from First Principles [55.41644538483948]
We design a deep-learning algorithm for the discovery and identification of the continuous group of symmetries present in a labeled dataset.
We use fully connected neural networks to model the transformations symmetry and the corresponding generators.
Our study also opens the door for using a machine learning approach in the mathematical study of Lie groups and their properties.
arXiv Detail & Related papers (2023-01-13T16:25:25Z) - Imaging with Equivariant Deep Learning [9.333799633608345]
We review the emerging field of equivariant imaging and show how it can provide improved generalization and new imaging opportunities.
We show the interplay between the acquisition physics and group actions and links to iterative reconstruction, blind compressed sensing and self-supervised learning.
arXiv Detail & Related papers (2022-09-05T02:13:57Z) - Orthonormal Convolutions for the Rotation Based Iterative
Gaussianization [64.44661342486434]
This paper elaborates an extension of rotation-based iterative Gaussianization, RBIG, which makes image Gaussianization possible.
In images its application has been restricted to small image patches or isolated pixels, because rotation in RBIG is based on principal or independent component analysis.
We present the emphConvolutional RBIG: an extension that alleviates this issue by imposing that the rotation in RBIG is a convolution.
arXiv Detail & Related papers (2022-06-08T12:56:34Z) - Frame Averaging for Equivariant Shape Space Learning [85.42901997467754]
A natural way to incorporate symmetries in shape space learning is to ask that the mapping to the shape space (encoder) and mapping from the shape space (decoder) are equivariant to the relevant symmetries.
We present a framework for incorporating equivariance in encoders and decoders by introducing two contributions.
arXiv Detail & Related papers (2021-12-03T06:41:19Z) - Frame Averaging for Invariant and Equivariant Network Design [50.87023773850824]
We introduce Frame Averaging (FA), a framework for adapting known (backbone) architectures to become invariant or equivariant to new symmetry types.
We show that FA-based models have maximal expressive power in a broad setting.
We propose a new class of universal Graph Neural Networks (GNNs), universal Euclidean motion invariant point cloud networks, and Euclidean motion invariant Message Passing (MP) GNNs.
arXiv Detail & Related papers (2021-10-07T11:05:23Z) - Learning Equivariant Representations [10.745691354609738]
Convolutional neural networks (CNNs) are successful examples of this principle.
We propose equivariant models for different transformations defined by groups of symmetries.
These models leverage symmetries in the data to reduce sample and model complexity and improve generalization performance.
arXiv Detail & Related papers (2020-12-04T18:46:17Z) - Generalizing Convolutional Neural Networks for Equivariance to Lie
Groups on Arbitrary Continuous Data [52.78581260260455]
We propose a general method to construct a convolutional layer that is equivariant to transformations from any specified Lie group.
We apply the same model architecture to images, ball-and-stick molecular data, and Hamiltonian dynamical systems.
arXiv Detail & Related papers (2020-02-25T17:40:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.