論文の概要: Weight Update Skipping: Reducing Training Time for Artificial Neural
Networks
- arxiv url: http://arxiv.org/abs/2012.02792v1
- Date: Sat, 5 Dec 2020 15:12:10 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 12:04:31.988122
- Title: Weight Update Skipping: Reducing Training Time for Artificial Neural
Networks
- Title(参考訳): ニューラルネットのトレーニング時間を短縮するweight update skipping
- Authors: Pooneh Safayenikoo, Ismail Akturk
- Abstract要約: 本稿では,時間的変動を示す精度向上の観察を生かしたANNのための新しいトレーニング手法を提案する。
このような時間窓の間、ネットワークがまだトレーニングされていることを保証し、過度な適合を避けるバイアスを更新し続けます。
このようなトレーニングアプローチは、計算コストを大幅に削減して、ほぼ同じ精度を達成し、トレーニング時間を短縮する。
- 参考スコア(独自算出の注目度): 0.30458514384586394
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial Neural Networks (ANNs) are known as state-of-the-art techniques in
Machine Learning (ML) and have achieved outstanding results in data-intensive
applications, such as recognition, classification, and segmentation. These
networks mostly use deep layers of convolution or fully connected layers with
many filters in each layer, demanding a large amount of data and tunable
hyperparameters to achieve competitive accuracy. As a result, storage,
communication, and computational costs of training (in particular training
time) become limiting factors to scale them up. In this paper, we propose a new
training methodology for ANNs that exploits the observation of improvement of
accuracy shows temporal variations which allow us to skip updating weights when
the variation is minuscule. During such time windows, we keep updating bias
which ensures the network still trains and avoids overfitting; however, we
selectively skip updating weights (and their time-consuming computations). Such
a training approach virtually achieves the same accuracy with considerably less
computational cost, thus lower training time. We propose two methods for
updating weights and evaluate them by analyzing four state-of-the-art models,
AlexNet, VGG-11, VGG-16, ResNet-18 on CIFAR datasets. On average, our two
proposed methods called WUS and WUS+LR reduced the training time (compared to
the baseline) by 54%, and 50%, respectively on CIFAR-10; and 43% and 35% on
CIFAR-100, respectively.
- Abstract(参考訳): ANN(Artificial Neural Networks)は、機械学習(ML)における最先端技術として知られ、認識、分類、セグメンテーションといったデータ集約型アプリケーションにおいて、優れた成果を上げている。
これらのネットワークは、主に深い畳み込み層または完全に接続された層を使い、各層に多くのフィルタがあり、競争精度を達成するために大量のデータと調整可能なハイパーパラメータを必要とする。
結果として、トレーニングの記憶、コミュニケーション、計算コスト(特にトレーニング時間)は、それらをスケールアップするための制限要因となる。
本稿では,ANNの精度向上の観察を活かした新しいトレーニング手法を提案し,その変動が極小である場合の更新重みを省略できるようにする。
このような時間窓の間、我々はネットワークがまだトレーニングされていることを保証し、過度な適合を避けるバイアスを更新し続けるが、更新重み(およびその時間を要する計算)を選択的に省略する。
このようなトレーニングアプローチは、計算コストを大幅に削減して、ほぼ同じ精度を達成し、トレーニング時間を短縮する。
CIFARデータセット上で、AlexNet、VGG-11、VGG-16、ResNet-18の4つの最先端モデルを分析し、重みを更新し評価する2つの方法を提案する。
提案手法であるwusとwus+lrでは,cifar-10ではトレーニング時間を54%,cifar-100では50%,cifar-100では43%,35%削減した。
関連論文リスト
- Always-Sparse Training by Growing Connections with Guided Stochastic
Exploration [46.4179239171213]
本研究では,より大規模かつスペーサーなモデルへのスケーリングに優れる,効率的な常時スパーストレーニングアルゴリズムを提案する。
我々は,VGGモデルとVTモデルを用いて,CIFAR-10/100 と ImageNet の手法を評価し,様々なスペーサー化手法と比較した。
論文 参考訳(メタデータ) (2024-01-12T21:32:04Z) - Relearning Forgotten Knowledge: on Forgetting, Overfit and Training-Free
Ensembles of DNNs [9.010643838773477]
本稿では,検証データ上での深層モデルの忘れ度をモニタする,過剰適合度定量化のための新しいスコアを提案する。
オーバーフィットは検証精度を低下させることなく発生しうることを示し,従来よりも一般的である可能性が示唆された。
我々は,1つのネットワークのトレーニング履歴のみに基づいて,新たなアンサンブル法を構築するために,我々の観測結果を用いて,トレーニング時間に追加のコストを要さず,大幅な改善を実現する。
論文 参考訳(メタデータ) (2023-10-17T09:22:22Z) - InRank: Incremental Low-Rank Learning [85.6380047359139]
勾配に基づくトレーニングは、トレーニング中のランクの段階的な増加を通じて、ニューラルネットワークを低ランクのソリューションに向けて暗黙的に正規化する。
既存のトレーニングアルゴリズムでは、計算効率を向上させるために、ローランクな特性を活用できない。
InRank(Incremental Low-Rank Learning)は,低ランク行列として累積重み更新を明示的に表現する学習アルゴリズムである。
論文 参考訳(メタデータ) (2023-06-20T03:03:04Z) - Learning Rate Curriculum [75.98230528486401]
ラーニングレートカリキュラム(LeRaC)と呼ばれる新しいカリキュラム学習手法を提案する。
LeRaCは、ニューラルネットワークの各レイヤ毎に異なる学習率を使用して、最初のトレーニングエポックの間、データに依存しないカリキュラムを作成する。
Smoothing(CBS)によるCurriculum(Curriculum)との比較を行った。
論文 参考訳(メタデータ) (2022-05-18T18:57:36Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
フェデレートラーニング(FL)は、プライバシを保護しながら機械学習モデルの分散最適化を可能にする。
我々は,FedRegを提案する。FedRegは,局所的な訓練段階において,知識を忘れることなくFLを加速するアルゴリズムである。
我々の実験は、FedRegはFLの収束率を著しく改善するだけでなく、特にニューラルネットワークアーキテクチャが深い場合にも改善することを示した。
論文 参考訳(メタデータ) (2022-03-05T02:31:32Z) - Low-Precision Training in Logarithmic Number System using Multiplicative
Weight Update [49.948082497688404]
大規模ディープニューラルネットワーク(DNN)のトレーニングは、現在かなりの量のエネルギーを必要としており、深刻な環境影響をもたらす。
エネルギーコストを削減するための有望なアプローチの1つは、DNNを低精度で表現することである。
対数数システム(LNS)と乗算重み更新訓練法(LNS-Madam)を併用した低精度トレーニングフレームワークを共同で設計する。
論文 参考訳(メタデータ) (2021-06-26T00:32:17Z) - FracTrain: Fractionally Squeezing Bit Savings Both Temporally and
Spatially for Efficient DNN Training [81.85361544720885]
アクティベーション、ウェイト、グラデーションの精度を徐々に高めるプログレッシブ分数量子化を統合したFracTrainを提案します。
FracTrainはDNNトレーニングの計算コストとハードウェア量子化エネルギー/レイテンシを削減し、同等以上の精度(-0.12%+1.87%)を達成する。
論文 参考訳(メタデータ) (2020-12-24T05:24:10Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
事前訓練されたモデルを用いたディープ畳み込みニューラルネットワーク(CNN)の微調整は、より大きなデータセットから学習した知識をターゲットタスクに転送するのに役立つ。
転送学習環境におけるバックプロパゲーションを深める戦略であるRIFLEを提案する。
RIFLEは、深いCNN層の重み付けに意味のあるアップデートをもたらし、低レベルの機能学習を改善する。
論文 参考訳(メタデータ) (2020-07-07T11:27:43Z) - Training highly effective connectivities within neural networks with
randomly initialized, fixed weights [4.56877715768796]
重みの符号を反転させてネットワークを訓練する新しい方法を提案する。
重みが一定等級であっても、高非対称分布から重みが引き出される場合でも良い結果が得られる。
論文 参考訳(メタデータ) (2020-06-30T09:41:18Z) - Reusing Trained Layers of Convolutional Neural Networks to Shorten
Hyperparameters Tuning Time [1.160208922584163]
本稿では,この過程を短縮するために,異なるトレーニングで隠蔽層(畳み込み層)の重みを再利用する提案について述べる。
実験では、再使用時のトレーニング時間と、畳み込みレイヤの再使用時のバリデーション損失を比較した。
彼らはこの戦略がトレーニング時間を短縮し、その結果のニューラルネットワークの精度も向上することを確認した。
論文 参考訳(メタデータ) (2020-06-16T11:39:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。