Urban Heat Islands: Beating the Heat with Multi-Modal Spatial Analysis
- URL: http://arxiv.org/abs/2012.03049v1
- Date: Sat, 5 Dec 2020 15:18:22 GMT
- Title: Urban Heat Islands: Beating the Heat with Multi-Modal Spatial Analysis
- Authors: Marcus Yong and Kwan Hui Lim
- Abstract summary: Excessive levels of heat stress leads to problems at various levels, ranging from the individual to the world.
At the world level, UHI potentially contributes to global warming and adversely affects the environment.
We propose a framework for investigating how UHI is affected by a city's urban form characteristics through the use of statistical modelling.
- Score: 0.3121997724420106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In today's highly urbanized environment, the Urban Heat Island (UHI)
phenomenon is increasingly prevalent where surface temperatures in urbanized
areas are found to be much higher than surrounding rural areas. Excessive
levels of heat stress leads to problems at various levels, ranging from the
individual to the world. At the individual level, UHI could lead to the human
body being unable to cope and break-down in terms of core functions. At the
world level, UHI potentially contributes to global warming and adversely
affects the environment. Using a multi-modal dataset comprising remote sensory
imagery, geo-spatial data and population data, we proposed a framework for
investigating how UHI is affected by a city's urban form characteristics
through the use of statistical modelling. Using Singapore as a case study, we
demonstrate the usefulness of this framework and discuss our main findings in
understanding the effects of UHI and urban form characteristics.
Related papers
- A Machine Learning Approach for the Efficient Estimation of Ground-Level Air Temperature in Urban Areas [6.7236795813629]
The Urban Heat Island (UHI) phenomenon that occurs in cities, increasing their thermal stress, is one of the stumbling blocks to achieve a more sustainable city.
In this work we explore the usefulness of image-to-image deep neural networks (DNNs) for correlating spatial and meteorological variables of a urban area with street-level air temperature.
The air temperature at street-level is estimated both spatially and temporally for a specific use case, and compared with existing, well-established numerical models.
arXiv Detail & Related papers (2024-11-05T15:05:23Z) - Causal Representation Learning in Temporal Data via Single-Parent Decoding [66.34294989334728]
Scientific research often seeks to understand the causal structure underlying high-level variables in a system.
Scientists typically collect low-level measurements, such as geographically distributed temperature readings.
We propose a differentiable method, Causal Discovery with Single-parent Decoding, that simultaneously learns the underlying latents and a causal graph over them.
arXiv Detail & Related papers (2024-10-09T15:57:50Z) - Urban Computing for Climate and Environmental Justice: Early Perspectives From Two Research Initiatives [2.8980151855313387]
Extreme weather events are becoming more frequent and severe, disproportionately affecting low-income and underrepresented groups.
We present two multiyear, multidisciplinary projects situated in Chicago, USA and Niter'oi, Brazil.
We discuss the essential requirements, as well as existing gaps, for visual analytics tools that facilitate the understanding and mitigation of climate-related risks in urban environments.
arXiv Detail & Related papers (2024-10-06T00:32:03Z) - Climate-sensitive Urban Planning through Optimization of Tree Placements [55.11389516857789]
Climate change is increasing the intensity and frequency of many extreme weather events, including heatwaves.
Among the most promising strategies is harnessing the benefits of urban trees in shading and cooling pedestrian-level environments.
Physical simulations can estimate the radiative and thermal impact of trees on human thermal comfort but induce high computational costs.
We employ neural networks to simulate the point-wise mean radiant temperatures--a driving factor of outdoor human thermal comfort--across various time scales.
arXiv Detail & Related papers (2023-10-09T13:07:23Z) - ML4EJ: Decoding the Role of Urban Features in Shaping Environmental
Injustice Using Interpretable Machine Learning [1.616733806935934]
This study creates an interpretable machine learning model to examine the effects of various urban features on exposure disparities of three primary hazards: air pollution, urban heat, and flooding.
The performance is used to measure the extent to which variations of urban features shape disparities in environmental hazard levels.
The insights gleaned from this study offer fresh perspectives on the relationship among urban features and their interplay with environmental hazard exposure disparities.
arXiv Detail & Related papers (2023-10-03T22:48:58Z) - Using machine learning to understand causal relationships between urban
form and travel CO2 emissions across continents [9.204800002382044]
We find significant causal effects of urban form on trip emissions and inter-feature effects, which had been neglected in previous work.
In more monocentric cities, we identify spatial corridors where subcenter-oriented development is more relevant than increased access to the main center.
Our work demonstrates a novel application of machine learning that enables new research addressing the needs of causality, generalizability, and contextual specificity for scaling evidence-based urban climate solutions.
arXiv Detail & Related papers (2023-08-31T09:57:52Z) - A Contextual Master-Slave Framework on Urban Region Graph for Urban
Village Detection [68.84486900183853]
We build an urban region graph (URG) to model the urban area in a hierarchically structured way.
Then, we design a novel contextual master-slave framework to effectively detect the urban village from the URG.
The proposed framework can learn to balance the generality and specificity for UV detection in an urban area.
arXiv Detail & Related papers (2022-11-26T18:17:39Z) - Effective Urban Region Representation Learning Using Heterogeneous Urban
Graph Attention Network (HUGAT) [0.0]
We propose heterogeneous urban graph attention network (HUGAT) for learning the representations of urban regions.
In our experiments on NYC data, HUGAT outperformed all the state-of-the-art models.
arXiv Detail & Related papers (2022-02-18T04:59:20Z) - Methodological Foundation of a Numerical Taxonomy of Urban Form [62.997667081978825]
We present a method for numerical taxonomy of urban form derived from biological systematics.
We derive homogeneous urban tissue types and, by determining overall morphological similarity between them, generate a hierarchical classification of urban form.
After framing and presenting the method, we test it on two cities - Prague and Amsterdam.
arXiv Detail & Related papers (2021-04-30T12:47:52Z) - From Static to Dynamic Prediction: Wildfire Risk Assessment Based on
Multiple Environmental Factors [69.9674326582747]
Wildfire is one of the biggest disasters that frequently occurs on the west coast of the United States.
We propose static and dynamic prediction models to analyze and assess the areas with high wildfire risks in California.
arXiv Detail & Related papers (2021-03-14T17:56:17Z) - Measuring Spatial Subdivisions in Urban Mobility with Mobile Phone Data [58.720142291102135]
By 2050 two thirds of the world population will reside in urban areas.
This growth is faster and more complex than the ability of cities to measure and plan for their sustainability.
To understand what makes a city inclusive for all, we define a methodology to identify and characterize spatial subdivisions.
arXiv Detail & Related papers (2020-02-20T14:37:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.