Graph Mixture Density Networks
- URL: http://arxiv.org/abs/2012.03085v1
- Date: Sat, 5 Dec 2020 17:39:38 GMT
- Title: Graph Mixture Density Networks
- Authors: Federico Errica, Davide Bacciu, Alessio Micheli
- Abstract summary: We introduce the Graph Mixture Density Network, a new family of machine learning models that can fit multimodal output distributions conditioned on arbitrary input graphs.
We show that there is a significant improvement in the likelihood of an epidemic outcome when taking into account both multimodality and structure.
- Score: 24.0362474769709
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce the Graph Mixture Density Network, a new family of machine
learning models that can fit multimodal output distributions conditioned on
arbitrary input graphs. By combining ideas from mixture models and graph
representation learning, we address a broad class of challenging regression
problems that rely on structured data. Our main contribution is the design and
evaluation of our method on large stochastic epidemic simulations conditioned
on random graphs. We show that there is a significant improvement in the
likelihood of an epidemic outcome when taking into account both multimodality
and structure. In addition, we investigate how to \textit{implicitly} retain
structural information in node representations by computing the distance
between distributions of adjacent nodes, and the technique is tested on two
structure reconstruction tasks with very good accuracy. Graph Mixture Density
Networks open appealing research opportunities in the study of
structure-dependent phenomena that exhibit non-trivial conditional output
distributions.
Related papers
- Unitary convolutions for learning on graphs and groups [0.9899763598214121]
We study unitary group convolutions, which allow for deeper networks that are more stable during training.
The main focus of the paper are graph neural networks, where we show that unitary graph convolutions provably avoid over-smoothing.
Our experimental results confirm that unitary graph convolutional networks achieve competitive performance on benchmark datasets.
arXiv Detail & Related papers (2024-10-07T21:09:14Z) - Graph Out-of-Distribution Generalization with Controllable Data
Augmentation [51.17476258673232]
Graph Neural Network (GNN) has demonstrated extraordinary performance in classifying graph properties.
Due to the selection bias of training and testing data, distribution deviation is widespread.
We propose OOD calibration to measure the distribution deviation of virtual samples.
arXiv Detail & Related papers (2023-08-16T13:10:27Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
We propose a novel framework for defining a graph mean via embeddings in the space of smooth graph signal distributions.
By finding a mean in this embedding space, we can recover a mean graph that preserves structural information.
We establish the existence and uniqueness of the novel graph mean, and provide an iterative algorithm for computing it.
arXiv Detail & Related papers (2023-05-31T11:04:53Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
We consider the problem of modelling high-dimensional distributions and generating new examples of data with complex relational feature structure coherent with a graph skeleton.
The model we propose tackles the problem of generating the data features constrained by the specific graph structure of each data point by splitting the task into two phases.
In the first it models the distribution of features associated with the nodes of the given graph, in the second it complements the edge features conditionally on the node features.
arXiv Detail & Related papers (2022-12-01T11:49:07Z) - Latent Graph Inference using Product Manifolds [0.0]
We generalize the discrete Differentiable Graph Module (dDGM) for latent graph learning.
Our novel approach is tested on a wide range of datasets, and outperforms the original dDGM model.
arXiv Detail & Related papers (2022-11-26T22:13:06Z) - Graph Condensation via Receptive Field Distribution Matching [61.71711656856704]
This paper focuses on creating a small graph to represent the original graph, so that GNNs trained on the size-reduced graph can make accurate predictions.
We view the original graph as a distribution of receptive fields and aim to synthesize a small graph whose receptive fields share a similar distribution.
arXiv Detail & Related papers (2022-06-28T02:10:05Z) - Score-based Generative Modeling of Graphs via the System of Stochastic
Differential Equations [57.15855198512551]
We propose a novel score-based generative model for graphs with a continuous-time framework.
We show that our method is able to generate molecules that lie close to the training distribution yet do not violate the chemical valency rule.
arXiv Detail & Related papers (2022-02-05T08:21:04Z) - Crime Prediction with Graph Neural Networks and Multivariate Normal
Distributions [18.640610803366876]
We tackle the sparsity problem in high resolution by leveraging the flexible structure of graph convolutional networks (GCNs)
We build our model with Graph Convolutional Gated Recurrent Units (Graph-ConvGRU) to learn spatial, temporal, and categorical relations.
We show that our model is not only generative but also precise.
arXiv Detail & Related papers (2021-11-29T17:37:01Z) - Multilayer Clustered Graph Learning [66.94201299553336]
We use contrastive loss as a data fidelity term, in order to properly aggregate the observed layers into a representative graph.
Experiments show that our method leads to a clustered clusters w.r.t.
We learn a clustering algorithm for solving clustering problems.
arXiv Detail & Related papers (2020-10-29T09:58:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.