Depth Completion using Piecewise Planar Model
- URL: http://arxiv.org/abs/2012.03195v1
- Date: Sun, 6 Dec 2020 07:11:46 GMT
- Title: Depth Completion using Piecewise Planar Model
- Authors: Yiran Zhong, Yuchao Dai, Hongdong Li
- Abstract summary: A depth map can be represented by a set of learned bases and can be efficiently solved in a closed form solution.
However, one issue with this method is that it may create artifacts when colour boundaries are inconsistent with depth boundaries.
We enforce a more strict model in depth recovery: a piece-wise planar model.
- Score: 94.0808155168311
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A depth map can be represented by a set of learned bases and can be
efficiently solved in a closed form solution. However, one issue with this
method is that it may create artifacts when colour boundaries are inconsistent
with depth boundaries. In fact, this is very common in a natural image. To
address this issue, we enforce a more strict model in depth recovery: a
piece-wise planar model. More specifically, we represent the desired depth map
as a collection of 3D planar and the reconstruction problem is formulated as
the optimization of planar parameters. Such a problem can be formulated as a
continuous CRF optimization problem and can be solved through particle based
method (MP-PBP) \cite{Yamaguchi14}. Extensive experimental evaluations on the
KITTI visual odometry dataset show that our proposed methods own high
resistance to false object boundaries and can generate useful and visually
pleasant 3D point clouds.
Related papers
- Depth-Regularized Optimization for 3D Gaussian Splatting in Few-Shot
Images [47.14713579719103]
We introduce a dense depth map as a geometry guide to mitigate overfitting.
The adjusted depth aids in the color-based optimization of 3D Gaussian splatting.
We verify the proposed method on the NeRF-LLFF dataset with varying numbers of few images.
arXiv Detail & Related papers (2023-11-22T13:53:04Z) - Diff-DOPE: Differentiable Deep Object Pose Estimation [29.703385848843414]
We introduce Diff-DOPE, a 6-DoF pose refiner that takes as input an image, a 3D textured model of an object, and an initial pose of the object.
The method uses differentiable rendering to update the object pose to minimize the visual error between the image and the projection of the model.
We show that this simple, yet effective, idea is able to achieve state-of-the-art results on pose estimation datasets.
arXiv Detail & Related papers (2023-09-30T18:52:57Z) - FrozenRecon: Pose-free 3D Scene Reconstruction with Frozen Depth Models [67.96827539201071]
We propose a novel test-time optimization approach for 3D scene reconstruction.
Our method achieves state-of-the-art cross-dataset reconstruction on five zero-shot testing datasets.
arXiv Detail & Related papers (2023-08-10T17:55:02Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
We present a learning-based method, namely GeoUDF, to tackle the problem of reconstructing a discrete surface from a sparse point cloud.
To be specific, we propose a geometry-guided learning method for UDF and its gradient estimation.
To extract triangle meshes from the predicted UDF, we propose a customized edge-based marching cube module.
arXiv Detail & Related papers (2022-11-30T06:02:01Z) - Depth Completion using Geometry-Aware Embedding [22.333381291860498]
This paper proposes an efficient method to learn geometry-aware embedding.
It encodes the local and global geometric structure information from 3D points, e.g., scene layout, object's sizes and shapes, to guide dense depth estimation.
arXiv Detail & Related papers (2022-03-21T12:06:27Z) - DeepMesh: Differentiable Iso-Surface Extraction [53.77622255726208]
We introduce a differentiable way to produce explicit surface mesh representations from Deep Implicit Fields.
Our key insight is that by reasoning on how implicit field perturbations impact local surface geometry, one can ultimately differentiate the 3D location of surface samples.
We exploit this to define DeepMesh -- end-to-end differentiable mesh representation that can vary its topology.
arXiv Detail & Related papers (2021-06-20T20:12:41Z) - Efficient Depth Completion Using Learned Bases [94.0808155168311]
We propose a new global geometry constraint for depth completion.
By assuming depth maps often lay on low dimensional subspaces, a dense depth map can be approximated by a weighted sum of full-resolution principal depth bases.
arXiv Detail & Related papers (2020-12-02T11:57:37Z) - AcED: Accurate and Edge-consistent Monocular Depth Estimation [0.0]
Single image depth estimation is a challenging problem.
We formulate a fully differentiable ordinal regression and train the network in end-to-end fashion.
A novel per-pixel confidence map computation for depth refinement is also proposed.
arXiv Detail & Related papers (2020-06-16T15:21:00Z) - Occlusion-Aware Depth Estimation with Adaptive Normal Constraints [85.44842683936471]
We present a new learning-based method for multi-frame depth estimation from a color video.
Our method outperforms the state-of-the-art in terms of depth estimation accuracy.
arXiv Detail & Related papers (2020-04-02T07:10:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.