論文の概要: Capturing Delayed Feedback in Conversion Rate Prediction via
Elapsed-Time Sampling
- arxiv url: http://arxiv.org/abs/2012.03245v2
- Date: Thu, 21 Jan 2021 10:07:29 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-22 06:23:43.371049
- Title: Capturing Delayed Feedback in Conversion Rate Prediction via
Elapsed-Time Sampling
- Title(参考訳): 経過時間サンプリングによる変換速度予測における遅延フィードバックの捕捉
- Authors: Jia-Qi Yang, Xiang Li, Shuguang Han, Tao Zhuang, De-Chuan Zhan, Xiaoyi
Zeng, Bin Tong
- Abstract要約: コンバージョンレート(CVR)予測は、デジタルディスプレイ広告において最も重要なタスクの1つである。
Elapsed-Time Smpling Delayed Feedback Model (ES-DFM) を提案する。
- 参考スコア(独自算出の注目度): 29.77426549280091
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Conversion rate (CVR) prediction is one of the most critical tasks for
digital display advertising. Commercial systems often require to update models
in an online learning manner to catch up with the evolving data distribution.
However, conversions usually do not happen immediately after a user click. This
may result in inaccurate labeling, which is called delayed feedback problem. In
previous studies, delayed feedback problem is handled either by waiting
positive label for a long period of time, or by consuming the negative sample
on its arrival and then insert a positive duplicate when a conversion happens
later. Indeed, there is a trade-off between waiting for more accurate labels
and utilizing fresh data, which is not considered in existing works. To strike
a balance in this trade-off, we propose Elapsed-Time Sampling Delayed Feedback
Model (ES-DFM), which models the relationship between the observed conversion
distribution and the true conversion distribution. Then we optimize the
expectation of true conversion distribution via importance sampling under the
elapsed-time sampling distribution. We further estimate the importance weight
for each instance, which is used as the weight of loss function in CVR
prediction. To demonstrate the effectiveness of ES-DFM, we conduct extensive
experiments on a public data and a private industrial dataset. Experimental
results confirm that our method consistently outperforms the previous
state-of-the-art results.
- Abstract(参考訳): コンバージョンレート(CVR)予測は、デジタルディスプレイ広告において最も重要なタスクの1つである。
商用システムは、進化するデータ配布に追いつくために、しばしばオンライン学習方法でモデルを更新する必要がある。
しかし、通常はユーザーがクリックした直後に変換は行われない。
これは遅延フィードバック問題と呼ばれる不正確なラベリングをもたらす可能性がある。
従来の研究では、遅延フィードバック問題は、長い期間正のラベルを待ち、または到着時に負のサンプルを消費し、後で変換が発生したときに正の重複を挿入することによって処理される。
実際、より正確なラベルを待つことと、既存の作品では考慮されていないフレッシュデータを利用するというトレードオフがある。
このトレードオフにおいてバランスをとるために,観測された変換分布と真の変換分布の関係をモデル化したElapsed-Time Smpling Delayed Feedback Model (ES-DFM)を提案する。
そして、経過時間サンプリング分布下で重要サンプリングによる真の変換分布の期待値を最適化する。
さらに,cvr予測において損失関数の重みとして使用される各インスタンスの重み付け量を推定する。
ES-DFMの有効性を実証するため,公開データとプライベート産業データセットについて広範な実験を行った。
実験結果から,本手法が先行する最新結果を一貫して上回っていることが確認された。
関連論文リスト
- DOTA: Distributional Test-Time Adaptation of Vision-Language Models [52.98590762456236]
トレーニングフリーテスト時動的アダプタ(TDA)は、この問題に対処するための有望なアプローチである。
単体テスト時間適応法(Dota)の簡易かつ効果的な方法を提案する。
Dotaは継続的にテストサンプルの分布を推定し、モデルがデプロイメント環境に継続的に適応できるようにします。
論文 参考訳(メタデータ) (2024-09-28T15:03:28Z) - Uncertainty-Calibrated Test-Time Model Adaptation without Forgetting [55.17761802332469]
テスト時間適応(TTA)は、与えられたモデルw.r.t.を任意のテストサンプルに適用することにより、トレーニングデータとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
事前の手法は各テストサンプルに対してバックプロパゲーションを実行するため、多くのアプリケーションに対して許容できない最適化コストがかかる。
本稿では, 有効サンプル選択基準を策定し, 信頼性および非冗長なサンプルを同定する, 効率的なアンチフォッティングテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-03-18T05:49:45Z) - Data Attribution for Diffusion Models: Timestep-induced Bias in Influence Estimation [53.27596811146316]
拡散モデルは、以前の文脈における瞬間的な入出力関係ではなく、一連のタイムステップで操作する。
本稿では、この時間的ダイナミクスを取り入れた拡散トラクInについて、サンプルの損失勾配ノルムが時間ステップに大きく依存していることを確認する。
そこで我々はDiffusion-ReTracを再正規化適応として導入し、興味のあるサンプルを対象にしたトレーニングサンプルの検索を可能にする。
論文 参考訳(メタデータ) (2024-01-17T07:58:18Z) - Data Feedback Loops: Model-driven Amplification of Dataset Biases [9.773315369593876]
我々は、あるモデルとのインタラクションを履歴として記録し、将来トレーニングデータとしてスクラップ化するシステムを定式化する。
テスト時間偏差統計に対する変化を追跡することによって、その安定性を経時的に分析する。
バイアス増幅の度合いは、モデルの出力がトレーニング分布のサンプルのように振る舞うかどうかと密接に関連していることがわかった。
論文 参考訳(メタデータ) (2022-09-08T17:35:51Z) - Generalized Delayed Feedback Model with Post-Click Information in
Recommender Systems [37.72697954740977]
クリック後のユーザ行動も変換率予測に有益であり,タイムラインの改善に有効であることを示す。
本稿では、クリック後の動作と初期変換の両方をクリック後の情報として統合する一般化遅延フィードバックモデル(GDFM)を提案する。
論文 参考訳(メタデータ) (2022-06-01T11:17:01Z) - Asymptotically Unbiased Estimation for Delayed Feedback Modeling via
Label Correction [14.462884375151045]
遅延したフィードバックは、オンライン広告の変換率予測に不可欠である。
これまでの遅延したフィードバックモデリング手法は、正確なラベルを待ち、新鮮なフィードバックを消費する間のトレードオフのバランスをとる。
提案手法は, 即効性, 偽陰性, 実陰性, 遅延正サンプルの重み付けをそれぞれ補正することを目的として, 非バイアス推定を用いた遅延フィードバックモデリング(DEFUSE)を提案する。
論文 参考訳(メタデータ) (2022-02-14T03:31:09Z) - Predicting with Confidence on Unseen Distributions [90.68414180153897]
ドメイン適応と予測不確実性文学を結びつけて、挑戦的な未知分布のモデル精度を予測する。
分類器の予測における信頼度(DoC)の差は,様々な変化に対して,分類器の性能変化を推定することに成功した。
具体的には, 合成分布と自然分布の区別について検討し, その単純さにもかかわらず, DoCは分布差の定量化に優れることを示した。
論文 参考訳(メタデータ) (2021-07-07T15:50:18Z) - Real Negatives Matter: Continuous Training with Real Negatives for
Delayed Feedback Modeling [10.828167195122072]
本稿では,リアルネガティブ(DEFER)を用いた遅延フィードバックモデルを提案する。
実際の負の摂取は、観察された特徴分布が実際の分布と同等であることを保証し、バイアスを低減する。
DEFERはAlibabaのディスプレイ広告システムにデプロイされており、いくつかのシナリオでCVRが6.4%改善されている。
論文 参考訳(メタデータ) (2021-04-29T05:37:34Z) - Time-Series Imputation with Wasserstein Interpolation for Optimal
Look-Ahead-Bias and Variance Tradeoff [66.59869239999459]
ファイナンスでは、ポートフォリオ最適化モデルをトレーニングする前に、損失の計算を適用することができる。
インキュベーションのために全データセットを使用するルックアヘッドバイアスと、トレーニングデータのみを使用することによるインキュベーションの大きなばらつきとの間には、本質的にトレードオフがある。
提案手法は,提案法における差分とルックアヘッドバイアスのトレードオフを最適に制御するベイズ後部コンセンサス分布である。
論文 参考訳(メタデータ) (2021-02-25T09:05:35Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
我々は予測時間バッチ正規化と呼び、共変量シフト時のモデル精度とキャリブレーションを大幅に改善する。
予測時間バッチ正規化は、既存の最先端アプローチに相補的な利点をもたらし、ロバスト性を向上させることを示します。
この手法は、事前トレーニングと併用して使用すると、さまざまな結果が得られるが、より自然なタイプのデータセットシフトでは、パフォーマンスが良くないようだ。
論文 参考訳(メタデータ) (2020-06-19T05:08:43Z) - A Feedback Shift Correction in Predicting Conversion Rates under Delayed
Feedback [6.38500614968955]
ディスプレイ広告では、広告を表示する価値を推定するために、変換率を予測することが不可欠である。
クリックと結果の変換の間には、比較的長い時間がかかる。
遅延したフィードバックのため、トレーニング期間中の肯定的なインスタンスには負のラベルが付けられている。
論文 参考訳(メタデータ) (2020-02-06T02:05:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。