FedSemi: An Adaptive Federated Semi-Supervised Learning Framework
- URL: http://arxiv.org/abs/2012.03292v1
- Date: Sun, 6 Dec 2020 15:46:04 GMT
- Title: FedSemi: An Adaptive Federated Semi-Supervised Learning Framework
- Authors: Zewei Long, Liwei Che, Yaqing Wang, Muchao Ye, Junyu Luo, Jinze Wu,
Houping Xiao, Fenglong Ma
- Abstract summary: Federated learning (FL) has emerged as an effective technique to co-training machine learning models without actually sharing data and leaking privacy.
Most existing FL methods focus on the supervised setting and ignore the utilization of unlabeled data.
We propose FedSemi, a novel, adaptive, and general framework, which firstly introduces the consistency regularization into FL using a teacher-student model.
- Score: 23.90642104477983
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) has emerged as an effective technique to co-training
machine learning models without actually sharing data and leaking privacy.
However, most existing FL methods focus on the supervised setting and ignore
the utilization of unlabeled data. Although there are a few existing studies
trying to incorporate unlabeled data into FL, they all fail to maintain
performance guarantees or generalization ability in various settings. In this
paper, we tackle the federated semi-supervised learning problem from the
insight of data regularization and analyze the new-raised difficulties. We
propose FedSemi, a novel, adaptive, and general framework, which firstly
introduces the consistency regularization into FL using a teacher-student
model. We further propose a new metric to measure the divergence of local model
layers. Based on the divergence, FedSemi can automatically select layer-level
parameters to be uploaded to the server in an adaptive manner. Through
extensive experimental validation of our method in four datasets, we show that
our method achieves performance gain under the IID setting and three Non-IID
settings compared to state-of-the-art baselines.
Related papers
- FedMAP: Unlocking Potential in Personalized Federated Learning through Bi-Level MAP Optimization [11.040916982022978]
Federated Learning (FL) enables collaborative training of machine learning models on decentralized data.
Data across clients often differs significantly due to class imbalance, feature distribution skew, sample size imbalance, and other phenomena.
We propose a novel Bayesian PFL framework using bi-level optimization to tackle the data heterogeneity challenges.
arXiv Detail & Related papers (2024-05-29T11:28:06Z) - Towards Robust Federated Learning via Logits Calibration on Non-IID Data [49.286558007937856]
Federated learning (FL) is a privacy-preserving distributed management framework based on collaborative model training of distributed devices in edge networks.
Recent studies have shown that FL is vulnerable to adversarial examples, leading to a significant drop in its performance.
In this work, we adopt the adversarial training (AT) framework to improve the robustness of FL models against adversarial example (AE) attacks.
arXiv Detail & Related papers (2024-03-05T09:18:29Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Exploiting Label Skews in Federated Learning with Model Concatenation [39.38427550571378]
Federated Learning (FL) has emerged as a promising solution to perform deep learning on different data owners without exchanging raw data.
Among different non-IID types, label skews have been challenging and common in image classification and other tasks.
We propose FedConcat, a simple and effective approach that degrades these local models as the base of the global model.
arXiv Detail & Related papers (2023-12-11T10:44:52Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - FEDIC: Federated Learning on Non-IID and Long-Tailed Data via Calibrated
Distillation [54.2658887073461]
Dealing with non-IID data is one of the most challenging problems for federated learning.
This paper studies the joint problem of non-IID and long-tailed data in federated learning and proposes a corresponding solution called Federated Ensemble Distillation with Imbalance (FEDIC)
FEDIC uses model ensemble to take advantage of the diversity of models trained on non-IID data.
arXiv Detail & Related papers (2022-04-30T06:17:36Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - Semi-Supervised Federated Learning with non-IID Data: Algorithm and
System Design [42.63120623012093]
Federated Learning (FL) allows edge devices (or clients) to keep data locally while simultaneously training a shared global model.
The distribution of the client's local training data is non-independent identically distributed (non-IID)
We present a robust semi-supervised FL system design, where the system aims to solve the problem of data availability and non-IID in FL.
arXiv Detail & Related papers (2021-10-26T03:41:48Z) - Federated learning with hierarchical clustering of local updates to
improve training on non-IID data [3.3517146652431378]
We show that learning a single joint model is often not optimal in the presence of certain types of non-iid data.
We present a modification to FL by introducing a hierarchical clustering step (FL+HC)
We show how FL+HC allows model training to converge in fewer communication rounds compared to FL without clustering.
arXiv Detail & Related papers (2020-04-24T15:16:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.