FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors
- URL: http://arxiv.org/abs/2503.15842v1
- Date: Thu, 20 Mar 2025 04:49:40 GMT
- Title: FedAWA: Adaptive Optimization of Aggregation Weights in Federated Learning Using Client Vectors
- Authors: Changlong Shi, He Zhao, Bingjie Zhang, Mingyuan Zhou, Dandan Guo, Yi Chang,
- Abstract summary: Federated Learning (FL) has emerged as a promising framework for distributed machine learning.<n>Data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning.<n>We propose Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process.
- Score: 50.131271229165165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) has emerged as a promising framework for distributed machine learning, enabling collaborative model training without sharing local data, thereby preserving privacy and enhancing security. However, data heterogeneity resulting from differences across user behaviors, preferences, and device characteristics poses a significant challenge for federated learning. Most previous works overlook the adjustment of aggregation weights, relying solely on dataset size for weight assignment, which often leads to unstable convergence and reduced model performance. Recently, several studies have sought to refine aggregation strategies by incorporating dataset characteristics and model alignment. However, adaptively adjusting aggregation weights while ensuring data security-without requiring additional proxy data-remains a significant challenge. In this work, we propose Federated learning with Adaptive Weight Aggregation (FedAWA), a novel method that adaptively adjusts aggregation weights based on client vectors during the learning process. The client vector captures the direction of model updates, reflecting local data variations, and is used to optimize the aggregation weight without requiring additional datasets or violating privacy. By assigning higher aggregation weights to local models whose updates align closely with the global optimization direction, FedAWA enhances the stability and generalization of the global model. Extensive experiments under diverse scenarios demonstrate the superiority of our method, providing a promising solution to the challenges of data heterogeneity in federated learning.
Related papers
- Enhancing Federated Learning Through Secure Cluster-Weighted Client Aggregation [4.869042695112397]
Federated learning (FL) has emerged as a promising paradigm in machine learning.
In FL, a global model is trained iteratively on local datasets residing on individual devices.
This paper introduces a novel FL framework, ClusterGuardFL, that employs dissimilarity scores, k-means clustering, and reconciliation confidence scores to dynamically assign weights to client updates.
arXiv Detail & Related papers (2025-03-29T04:29:24Z) - Dual-Criterion Model Aggregation in Federated Learning: Balancing Data Quantity and Quality [0.0]
Federated learning (FL) has become one of the key methods for privacy-preserving collaborative learning.
An aggregation algorithm is recognized as one of the most crucial components for ensuring the efficacy and security of the system.
This study proposes a novel dual-criterion weighted aggregation algorithm involving the quantity and quality of data from the client node.
arXiv Detail & Related papers (2024-11-12T14:09:16Z) - Adaptive Data Optimization: Dynamic Sample Selection with Scaling Laws [59.03420759554073]
We introduce Adaptive Data Optimization (ADO), an algorithm that optimize data distributions in an online fashion, concurrent with model training.
ADO does not require external knowledge, proxy models, or modifications to the model update.
ADO uses per-domain scaling laws to estimate the learning potential of each domain during training and adjusts the data mixture accordingly.
arXiv Detail & Related papers (2024-10-15T17:47:44Z) - Addressing Data Heterogeneity in Federated Learning with Adaptive Normalization-Free Feature Recalibration [1.33512912917221]
Federated learning is a decentralized collaborative training paradigm that preserves stakeholders' data ownership while improving performance and generalization.
We propose Adaptive Normalization-free Feature Recalibration (ANFR), an architecture-level approach that combines weight standardization and channel attention.
arXiv Detail & Related papers (2024-10-02T20:16:56Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Mitigating System Bias in Resource Constrained Asynchronous Federated
Learning Systems [2.8790600498444032]
We propose a dynamic global model aggregation method within Asynchronous Federated Learning (AFL) deployments.
Our method scores and adjusts the weighting of client model updates based on their upload frequency to accommodate differences in device capabilities.
arXiv Detail & Related papers (2024-01-24T10:51:15Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Consistency Regularization for Generalizable Source-free Domain
Adaptation [62.654883736925456]
Source-free domain adaptation (SFDA) aims to adapt a well-trained source model to an unlabelled target domain without accessing the source dataset.
Existing SFDA methods ONLY assess their adapted models on the target training set, neglecting the data from unseen but identically distributed testing sets.
We propose a consistency regularization framework to develop a more generalizable SFDA method.
arXiv Detail & Related papers (2023-08-03T07:45:53Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedDRL: Deep Reinforcement Learning-based Adaptive Aggregation for
Non-IID Data in Federated Learning [4.02923738318937]
Uneven distribution of local data across different edge devices (clients) results in slow model training and accuracy reduction in federated learning.
This work introduces a novel non-IID type encountered in real-world datasets, namely cluster-skew.
We propose FedDRL, a novel FL model that employs deep reinforcement learning to adaptively determine each client's impact factor.
arXiv Detail & Related papers (2022-08-04T04:24:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.