Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models
- URL: http://arxiv.org/abs/2012.03369v2
- Date: Thu, 29 Apr 2021 21:28:56 GMT
- Title: Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models
- Authors: Dong Wang, Yuewei Yang, Chenyang Tao, Zhe Gan, Liqun Chen, Fanjie
Kong, Ricardo Henao, Lawrence Carin
- Abstract summary: We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
- Score: 103.64435911083432
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep neural networks excel at comprehending complex visual signals,
delivering on par or even superior performance to that of human experts.
However, ad-hoc visual explanations of model decisions often reveal an alarming
level of reliance on exploiting non-causal visual cues that strongly correlate
with the target label in training data. As such, deep neural nets suffer
compromised generalization to novel inputs collected from different sources,
and the reverse engineering of their decision rules offers limited
interpretability. To overcome these limitations, we present a novel contrastive
learning strategy called {\it Proactive Pseudo-Intervention} (PPI) that
leverages proactive interventions to guard against image features with no
causal relevance. We also devise a novel causally informed salience mapping
module to identify key image pixels to intervene, and show it greatly
facilitates model interpretability. To demonstrate the utility of our
proposals, we benchmark on both standard natural images and challenging medical
image datasets. PPI-enhanced models consistently deliver superior performance
relative to competing solutions, especially on out-of-domain predictions and
data integration from heterogeneous sources. Further, our causally trained
saliency maps are more succinct and meaningful relative to their non-causal
counterparts.
Related papers
- Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement [58.9768112704998]
Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
arXiv Detail & Related papers (2024-02-15T05:07:54Z) - Detecting Spurious Correlations via Robust Visual Concepts in Real and
AI-Generated Image Classification [12.992095539058022]
We introduce a general-purpose method that efficiently detects potential spurious correlations.
The proposed method provides intuitive explanations while eliminating the need for pixel-level annotations.
Our method is also suitable for detecting spurious correlations that may propagate to downstream applications originating from generative models.
arXiv Detail & Related papers (2023-11-03T01:12:35Z) - Free-ATM: Exploring Unsupervised Learning on Diffusion-Generated Images
with Free Attention Masks [64.67735676127208]
Text-to-image diffusion models have shown great potential for benefiting image recognition.
Although promising, there has been inadequate exploration dedicated to unsupervised learning on diffusion-generated images.
We introduce customized solutions by fully exploiting the aforementioned free attention masks.
arXiv Detail & Related papers (2023-08-13T10:07:46Z) - Interpretable Computer Vision Models through Adversarial Training:
Unveiling the Robustness-Interpretability Connection [0.0]
Interpretability is as essential as robustness when we deploy the models to the real world.
Standard models, compared to robust are more susceptible to adversarial attacks, and their learned representations are less meaningful to humans.
arXiv Detail & Related papers (2023-07-04T13:51:55Z) - Improving Explainability of Disentangled Representations using
Multipath-Attribution Mappings [12.145748796751619]
We propose a framework that utilizes interpretable disentangled representations for downstream-task prediction.
We demonstrate the effectiveness of our approach on a synthetic benchmark suite and two medical datasets.
arXiv Detail & Related papers (2023-06-15T10:52:29Z) - Explainable Adversarial Attacks in Deep Neural Networks Using Activation
Profiles [69.9674326582747]
This paper presents a visual framework to investigate neural network models subjected to adversarial examples.
We show how observing these elements can quickly pinpoint exploited areas in a model.
arXiv Detail & Related papers (2021-03-18T13:04:21Z) - Deep Co-Attention Network for Multi-View Subspace Learning [73.3450258002607]
We propose a deep co-attention network for multi-view subspace learning.
It aims to extract both the common information and the complementary information in an adversarial setting.
In particular, it uses a novel cross reconstruction loss and leverages the label information to guide the construction of the latent representation.
arXiv Detail & Related papers (2021-02-15T18:46:44Z) - Contextual Fusion For Adversarial Robustness [0.0]
Deep neural networks are usually designed to process one particular information stream and susceptible to various types of adversarial perturbations.
We developed a fusion model using a combination of background and foreground features extracted in parallel from Places-CNN and Imagenet-CNN.
For gradient based attacks, our results show that fusion allows for significant improvements in classification without decreasing performance on unperturbed data.
arXiv Detail & Related papers (2020-11-18T20:13:23Z) - Understanding Adversarial Examples from the Mutual Influence of Images
and Perturbations [83.60161052867534]
We analyze adversarial examples by disentangling the clean images and adversarial perturbations, and analyze their influence on each other.
Our results suggest a new perspective towards the relationship between images and universal perturbations.
We are the first to achieve the challenging task of a targeted universal attack without utilizing original training data.
arXiv Detail & Related papers (2020-07-13T05:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.