Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement
- URL: http://arxiv.org/abs/2402.09712v2
- Date: Wed, 12 Jun 2024 15:20:36 GMT
- Title: Diffusion Model with Cross Attention as an Inductive Bias for Disentanglement
- Authors: Tao Yang, Cuiling Lan, Yan Lu, Nanning zheng,
- Abstract summary: Disentangled representation learning strives to extract the intrinsic factors within observed data.
We introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias.
This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs.
- Score: 58.9768112704998
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Disentangled representation learning strives to extract the intrinsic factors within observed data. Factorizing these representations in an unsupervised manner is notably challenging and usually requires tailored loss functions or specific structural designs. In this paper, we introduce a new perspective and framework, demonstrating that diffusion models with cross-attention can serve as a powerful inductive bias to facilitate the learning of disentangled representations. We propose to encode an image to a set of concept tokens and treat them as the condition of the latent diffusion for image reconstruction, where cross-attention over the concept tokens is used to bridge the interaction between the encoder and diffusion. Without any additional regularization, this framework achieves superior disentanglement performance on the benchmark datasets, surpassing all previous methods with intricate designs. We have conducted comprehensive ablation studies and visualization analysis, shedding light on the functioning of this model. This is the first work to reveal the potent disentanglement capability of diffusion models with cross-attention, requiring no complex designs. We anticipate that our findings will inspire more investigation on exploring diffusion for disentangled representation learning towards more sophisticated data analysis and understanding.
Related papers
- Human-Object Interaction Detection Collaborated with Large Relation-driven Diffusion Models [65.82564074712836]
We introduce DIFfusionHOI, a new HOI detector shedding light on text-to-image diffusion models.
We first devise an inversion-based strategy to learn the expression of relation patterns between humans and objects in embedding space.
These learned relation embeddings then serve as textual prompts, to steer diffusion models generate images that depict specific interactions.
arXiv Detail & Related papers (2024-10-26T12:00:33Z) - Diffusion Models in Low-Level Vision: A Survey [82.77962165415153]
diffusion model-based solutions have emerged as widely acclaimed for their ability to produce samples of superior quality and diversity.
We present three generic diffusion modeling frameworks and explore their correlations with other deep generative models.
We summarize extended diffusion models applied in other tasks, including medical, remote sensing, and video scenarios.
arXiv Detail & Related papers (2024-06-17T01:49:27Z) - DiffusionPID: Interpreting Diffusion via Partial Information Decomposition [24.83767778658948]
We apply information-theoretic principles to decompose the input text prompt into its elementary components.
We analyze how individual tokens and their interactions shape the generated image.
We show that PID is a potent tool for evaluating and diagnosing text-to-image diffusion models.
arXiv Detail & Related papers (2024-06-07T18:17:17Z) - Unveiling and Mitigating Memorization in Text-to-image Diffusion Models through Cross Attention [62.671435607043875]
Research indicates that text-to-image diffusion models replicate images from their training data, raising tremendous concerns about potential copyright infringement and privacy risks.
We reveal that during memorization, the cross-attention tends to focus disproportionately on the embeddings of specific tokens.
We introduce an innovative approach to detect and mitigate memorization in diffusion models.
arXiv Detail & Related papers (2024-03-17T01:27:00Z) - Explaining generative diffusion models via visual analysis for
interpretable decision-making process [28.552283701883766]
We propose the three research questions to interpret the diffusion process from the perspective of the visual concepts generated by the model.
We devise tools for visualizing the diffusion process and answering the aforementioned research questions to render the diffusion process human-understandable.
arXiv Detail & Related papers (2024-02-16T02:12:20Z) - Bridging Generative and Discriminative Models for Unified Visual
Perception with Diffusion Priors [56.82596340418697]
We propose a simple yet effective framework comprising a pre-trained Stable Diffusion (SD) model containing rich generative priors, a unified head (U-head) capable of integrating hierarchical representations, and an adapted expert providing discriminative priors.
Comprehensive investigations unveil potential characteristics of Vermouth, such as varying granularity of perception concealed in latent variables at distinct time steps and various U-net stages.
The promising results demonstrate the potential of diffusion models as formidable learners, establishing their significance in furnishing informative and robust visual representations.
arXiv Detail & Related papers (2024-01-29T10:36:57Z) - Directional diffusion models for graph representation learning [9.457273750874357]
We propose a new class of models called it directional diffusion models
These models incorporate data-dependent, anisotropic, and directional noises in the forward diffusion process.
We conduct extensive experiments on 12 publicly available datasets, focusing on two distinct graph representation learning tasks.
arXiv Detail & Related papers (2023-06-22T21:27:48Z) - DiffusionSeg: Adapting Diffusion Towards Unsupervised Object Discovery [20.787180028571694]
DiffusionSeg is a synthesis-exploitation framework containing two-stage strategies.
We synthesize abundant images, and propose a novel training-free AttentionCut to obtain masks in the first stage.
In the second exploitation stage, to bridge the structural gap, we use the inversion technique, to map the given image back to diffusion features.
arXiv Detail & Related papers (2023-03-17T07:47:55Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
We present a novel contrastive learning strategy called it Proactive Pseudo-Intervention (PPI)
PPI leverages proactive interventions to guard against image features with no causal relevance.
We also devise a novel causally informed salience mapping module to identify key image pixels to intervene, and show it greatly facilitates model interpretability.
arXiv Detail & Related papers (2020-12-06T20:30:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.