The Neural Coding Framework for Learning Generative Models
- URL: http://arxiv.org/abs/2012.03405v3
- Date: Fri, 25 Dec 2020 01:52:40 GMT
- Title: The Neural Coding Framework for Learning Generative Models
- Authors: Alexander Ororbia and Daniel Kifer
- Abstract summary: We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
- Score: 91.0357317238509
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural generative models can be used to learn complex probability
distributions from data, to sample from them, and to produce probability
density estimates. We propose a novel neural generative model inspired by the
theory of predictive processing in the brain. According to predictive
processing theory, the neurons in the brain form a hierarchy in which neurons
in one level form expectations about sensory inputs from another level. These
neurons update their local models based on differences between their
expectations and the observed signals. In a similar way, artificial neurons in
our generative model predict what neighboring neurons will do, and adjust their
parameters based on how well the predictions matched reality. This neural
generative model performs very well in practice. On a variety of benchmark
datasets and metrics, it either remains competitive with or significantly
outperforms other generative models with similar functionality (such as the
variational auto-encoder).
Related papers
- Towards a Foundation Model for Brain Age Prediction using coVariance
Neural Networks [102.75954614946258]
Increasing brain age with respect to chronological age can reflect increased vulnerability to neurodegeneration and cognitive decline.
NeuroVNN is pre-trained as a regression model on healthy population to predict chronological age.
NeuroVNN adds anatomical interpretability to brain age and has a scale-free' characteristic that allows its transference to datasets curated according to any arbitrary brain atlas.
arXiv Detail & Related papers (2024-02-12T14:46:31Z) - Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - WaLiN-GUI: a graphical and auditory tool for neuron-based encoding [73.88751967207419]
Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
arXiv Detail & Related papers (2023-10-25T20:34:08Z) - A Spectral Theory of Neural Prediction and Alignment [8.65717258105897]
We use a recent theoretical framework that relates the generalization error from regression to the spectral properties of the model and the target.
We test a large number of deep neural networks that predict visual cortical activity and show that there are multiple types of geometries that result in low neural prediction error as measured via regression.
arXiv Detail & Related papers (2023-09-22T12:24:06Z) - Understanding Neural Coding on Latent Manifolds by Sharing Features and
Dividing Ensembles [3.625425081454343]
Systems neuroscience relies on two complementary views of neural data, characterized by single neuron tuning curves and analysis of population activity.
These two perspectives combine elegantly in neural latent variable models that constrain the relationship between latent variables and neural activity.
We propose feature sharing across neural tuning curves, which significantly improves performance and leads to better-behaved optimization.
arXiv Detail & Related papers (2022-10-06T18:37:49Z) - Supervised Parameter Estimation of Neuron Populations from Multiple
Firing Events [3.2826301276626273]
We study an automatic approach of learning the parameters of neuron populations from a training set consisting of pairs of spiking series and parameter labels via supervised learning.
We simulate many neuronal populations at computation at different parameter settings using a neuron model.
We then compare their performance against classical approaches including a genetic search, Bayesian sequential estimation, and a random walk approximate model.
arXiv Detail & Related papers (2022-10-02T03:17:05Z) - Dependency-based Mixture Language Models [53.152011258252315]
We introduce the Dependency-based Mixture Language Models.
In detail, we first train neural language models with a novel dependency modeling objective.
We then formulate the next-token probability by mixing the previous dependency modeling probability distributions with self-attention.
arXiv Detail & Related papers (2022-03-19T06:28:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.