WaLiN-GUI: a graphical and auditory tool for neuron-based encoding
- URL: http://arxiv.org/abs/2310.16983v1
- Date: Wed, 25 Oct 2023 20:34:08 GMT
- Title: WaLiN-GUI: a graphical and auditory tool for neuron-based encoding
- Authors: Simon F. M\"uller-Cleve and Fernando M. Quintana and Vittorio Fra and
Pedro L. Galindo and Fernando Perez-Pe\~na and Gianvito Urgese and Chiara
Bartolozzi
- Abstract summary: Neuromorphic computing relies on spike-based, energy-efficient communication.
We develop a tool to identify suitable configurations for neuron-based encoding of sample-based data into spike trains.
The WaLiN-GUI is provided open source and with documentation.
- Score: 73.88751967207419
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neuromorphic computing relies on spike-based, energy-efficient communication,
inherently implying the need for conversion between real-valued (sensory) data
and binary, sparse spiking representation. This is usually accomplished using
the real valued data as current input to a spiking neuron model, and tuning the
neuron's parameters to match a desired, often biologically inspired behaviour.
We developed a tool, the WaLiN-GUI, that supports the investigation of neuron
models and parameter combinations to identify suitable configurations for
neuron-based encoding of sample-based data into spike trains. Due to the
generalized LIF model implemented by default, next to the LIF and Izhikevich
neuron models, many spiking behaviors can be investigated out of the box, thus
offering the possibility of tuning biologically plausible responses to the
input data. The GUI is provided open source and with documentation, being easy
to extend with further neuron models and personalize with data analysis
functions.
Related papers
- Neuroformer: Multimodal and Multitask Generative Pretraining for Brain Data [3.46029409929709]
State-of-the-art systems neuroscience experiments yield large-scale multimodal data, and these data sets require new tools for analysis.
Inspired by the success of large pretrained models in vision and language domains, we reframe the analysis of large-scale, cellular-resolution neuronal spiking data into an autoregressive generation problem.
We first trained Neuroformer on simulated datasets, and found that it both accurately predicted intrinsically simulated neuronal circuit activity, and also inferred the underlying neural circuit connectivity, including direction.
arXiv Detail & Related papers (2023-10-31T20:17:32Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
We introduce the Expressive Memory (ELM) neuron model, a biologically inspired model of a cortical neuron.
Our ELM neuron can accurately match the aforementioned input-output relationship with under ten thousand trainable parameters.
We evaluate it on various tasks with demanding temporal structures, including the Long Range Arena (LRA) datasets.
arXiv Detail & Related papers (2023-06-14T13:34:13Z) - Neuron to Graph: Interpreting Language Model Neurons at Scale [8.32093320910416]
This paper introduces a novel automated approach designed to scale interpretability techniques across a vast array of neurons within Large Language Models.
We propose Neuron to Graph (N2G), an innovative tool that automatically extracts a neuron's behaviour from the dataset it was trained on and translates it into an interpretable graph.
arXiv Detail & Related papers (2023-05-31T14:44:33Z) - Simple and complex spiking neurons: perspectives and analysis in a
simple STDP scenario [0.7829352305480283]
Spiking neural networks (SNNs) are inspired by biology and neuroscience to create fast and efficient learning systems.
This work considers various neuron models in the literature and then selects computational neuron models that are single-variable, efficient, and display different types of complexities.
We make a comparative study of three simple I&F neuron models, namely the LIF, the Quadratic I&F (QIF) and the Exponential I&F (EIF), to understand whether the use of more complex models increases the performance of the system.
arXiv Detail & Related papers (2022-06-28T10:01:51Z) - Mapping and Validating a Point Neuron Model on Intel's Neuromorphic
Hardware Loihi [77.34726150561087]
We investigate the potential of Intel's fifth generation neuromorphic chip - Loihi'
Loihi is based on the novel idea of Spiking Neural Networks (SNNs) emulating the neurons in the brain.
We find that Loihi replicates classical simulations very efficiently and scales notably well in terms of both time and energy performance as the networks get larger.
arXiv Detail & Related papers (2021-09-22T16:52:51Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
We propose a novel neural generative model inspired by the theory of predictive processing in the brain.
In a similar way, artificial neurons in our generative model predict what neighboring neurons will do, and adjust their parameters based on how well the predictions matched reality.
arXiv Detail & Related papers (2020-12-07T01:20:38Z) - Learning identifiable and interpretable latent models of
high-dimensional neural activity using pi-VAE [10.529943544385585]
We propose a method that integrates key ingredients from latent models and traditional neural encoding models.
Our method, pi-VAE, is inspired by recent progress on identifiable variational auto-encoder.
We validate pi-VAE using synthetic data, and apply it to analyze neurophysiological datasets from rat hippocampus and macaque motor cortex.
arXiv Detail & Related papers (2020-11-09T22:00:38Z) - Flexible Transmitter Network [84.90891046882213]
Current neural networks are mostly built upon the MP model, which usually formulates the neuron as executing an activation function on the real-valued weighted aggregation of signals received from other neurons.
We propose the Flexible Transmitter (FT) model, a novel bio-plausible neuron model with flexible synaptic plasticity.
We present the Flexible Transmitter Network (FTNet), which is built on the most common fully-connected feed-forward architecture.
arXiv Detail & Related papers (2020-04-08T06:55:12Z) - Non-linear Neurons with Human-like Apical Dendrite Activations [81.18416067005538]
We show that a standard neuron followed by our novel apical dendrite activation (ADA) can learn the XOR logical function with 100% accuracy.
We conduct experiments on six benchmark data sets from computer vision, signal processing and natural language processing.
arXiv Detail & Related papers (2020-02-02T21:09:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.