Learning Graph Neural Networks with Approximate Gradient Descent
- URL: http://arxiv.org/abs/2012.03429v1
- Date: Mon, 7 Dec 2020 02:54:48 GMT
- Title: Learning Graph Neural Networks with Approximate Gradient Descent
- Authors: Qunwei Li and Shaofeng Zou and Wenliang Zhong
- Abstract summary: Two types of graph neural networks (GNNs) are investigated, depending on whether labels are attached to nodes or graphs.
A comprehensive framework for designing and analyzing convergence of GNN training algorithms is developed.
The proposed algorithm guarantees a linear convergence rate to the underlying true parameters of GNNs.
- Score: 24.49427608361397
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The first provably efficient algorithm for learning graph neural networks
(GNNs) with one hidden layer for node information convolution is provided in
this paper. Two types of GNNs are investigated, depending on whether labels are
attached to nodes or graphs. A comprehensive framework for designing and
analyzing convergence of GNN training algorithms is developed. The algorithm
proposed is applicable to a wide range of activation functions including ReLU,
Leaky ReLU, Sigmod, Softplus and Swish. It is shown that the proposed algorithm
guarantees a linear convergence rate to the underlying true parameters of GNNs.
For both types of GNNs, sample complexity in terms of the number of nodes or
the number of graphs is characterized. The impact of feature dimension and GNN
structure on the convergence rate is also theoretically characterized.
Numerical experiments are further provided to validate our theoretical
analysis.
Related papers
- DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
We propose DEGREE to provide a faithful explanation for GNN predictions.
By decomposing the information generation and aggregation mechanism of GNNs, DEGREE allows tracking the contributions of specific components of the input graph to the final prediction.
We also design a subgraph level interpretation algorithm to reveal complex interactions between graph nodes that are overlooked by previous methods.
arXiv Detail & Related papers (2023-05-22T10:29:52Z) - Two-level Graph Neural Network [15.014364222532347]
We propose a novel GNN framework, referred to as the Two-level GNN (TL-GNN)
This merges subgraph-level information with node-level information.
Experiments show that TL-GNN outperforms existing GNNs and achieves state-of-the-art performance.
arXiv Detail & Related papers (2022-01-03T02:15:20Z) - Edge-Level Explanations for Graph Neural Networks by Extending
Explainability Methods for Convolutional Neural Networks [33.20913249848369]
Graph Neural Networks (GNNs) are deep learning models that take graph data as inputs, and they are applied to various tasks such as traffic prediction and molecular property prediction.
We extend explainability methods for CNNs, such as Local Interpretable Model-Agnostic Explanations (LIME), Gradient-Based Saliency Maps, and Gradient-Weighted Class Activation Mapping (Grad-CAM) to GNNs.
The experimental results indicate that the LIME-based approach is the most efficient explainability method for multiple tasks in the real-world situation, outperforming even the state-of-the
arXiv Detail & Related papers (2021-11-01T06:27:29Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
It is known that the current graph neural networks (GNNs) are difficult to make themselves deep due to the problem known as over-smoothing.
Multi-scale GNNs are a promising approach for mitigating the over-smoothing problem.
We derive the optimization and generalization guarantees of transductive learning algorithms that include multi-scale GNNs.
arXiv Detail & Related papers (2020-06-15T17:06:17Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
We present two techniques, GNNs over dense fixed graphs for low-dimensional problems and sampling-based GNNs for high-dimensional problems.
We examine the ability of a GNN to tackle planning problems such as identifying critical nodes or learning the sampling distribution in Rapidly-exploring Random Trees (RRT)
Experiments with critical sampling, a pendulum and a six DoF robot arm show GNNs improve on traditional analytic methods as well as learning approaches using fully-connected or convolutional neural networks.
arXiv Detail & Related papers (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.