Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case
- URL: http://arxiv.org/abs/2006.14117v1
- Date: Thu, 25 Jun 2020 00:45:52 GMT
- Title: Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case
- Authors: Shuai Zhang, Meng Wang, Sijia Liu, Pin-Yu Chen, Jinjun Xiong
- Abstract summary: Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
- Score: 93.37576644429578
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although graph neural networks (GNNs) have made great progress recently on
learning from graph-structured data in practice, their theoretical guarantee on
generalizability remains elusive in the literature. In this paper, we provide a
theoretically-grounded generalizability analysis of GNNs with one hidden layer
for both regression and binary classification problems. Under the assumption
that there exists a ground-truth GNN model (with zero generalization error),
the objective of GNN learning is to estimate the ground-truth GNN parameters
from the training data. To achieve this objective, we propose a learning
algorithm that is built on tensor initialization and accelerated gradient
descent. We then show that the proposed learning algorithm converges to the
ground-truth GNN model for the regression problem, and to a model sufficiently
close to the ground-truth for the binary classification problem. Moreover, for
both cases, the convergence rate of the proposed learning algorithm is proven
to be linear and faster than the vanilla gradient descent algorithm. We further
explore the relationship between the sample complexity of GNNs and their
underlying graph properties. Lastly, we provide numerical experiments to
demonstrate the validity of our analysis and the effectiveness of the proposed
learning algorithm for GNNs.
Related papers
- Online GNN Evaluation Under Test-time Graph Distribution Shifts [92.4376834462224]
A new research problem, online GNN evaluation, aims to provide valuable insights into the well-trained GNNs's ability to generalize to real-world unlabeled graphs.
We develop an effective learning behavior discrepancy score, dubbed LeBeD, to estimate the test-time generalization errors of well-trained GNN models.
arXiv Detail & Related papers (2024-03-15T01:28:08Z) - On the Generalization Capability of Temporal Graph Learning Algorithms:
Theoretical Insights and a Simpler Method [59.52204415829695]
Temporal Graph Learning (TGL) has become a prevalent technique across diverse real-world applications.
This paper investigates the generalization ability of different TGL algorithms.
We propose a simplified TGL network, which enjoys a small generalization error, improved overall performance, and lower model complexity.
arXiv Detail & Related papers (2024-02-26T08:22:22Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - GNN-Ensemble: Towards Random Decision Graph Neural Networks [3.7620848582312405]
Graph Neural Networks (GNNs) have enjoyed wide spread applications in graph-structured data.
GNNs are required to learn latent patterns from a limited amount of training data to perform inferences on a vast amount of test data.
In this paper, we push one step forward on the ensemble learning of GNNs with improved accuracy, robustness, and adversarial attacks.
arXiv Detail & Related papers (2023-03-20T18:24:01Z) - Invertible Neural Networks for Graph Prediction [22.140275054568985]
In this work, we address conditional generation using deep invertible neural networks.
We adopt an end-to-end training approach since our objective is to address prediction and generation in the forward and backward processes at once.
arXiv Detail & Related papers (2022-06-02T17:28:33Z) - Tackling Oversmoothing of GNNs with Contrastive Learning [35.88575306925201]
Graph neural networks (GNNs) integrate the comprehensive relation of graph data and representation learning capability.
Oversmoothing makes the final representations of nodes indiscriminative, thus deteriorating the node classification and link prediction performance.
We propose the Topology-guided Graph Contrastive Layer, named TGCL, which is the first de-oversmoothing method maintaining all three mentioned metrics.
arXiv Detail & Related papers (2021-10-26T15:56:16Z) - Optimization of Graph Neural Networks: Implicit Acceleration by Skip
Connections and More Depth [57.10183643449905]
Graph Neural Networks (GNNs) have been studied from the lens of expressive power and generalization.
We study the dynamics of GNNs by studying deep skip optimization.
Our results provide first theoretical support for the success of GNNs.
arXiv Detail & Related papers (2021-05-10T17:59:01Z) - Learning Graph Neural Networks with Approximate Gradient Descent [24.49427608361397]
Two types of graph neural networks (GNNs) are investigated, depending on whether labels are attached to nodes or graphs.
A comprehensive framework for designing and analyzing convergence of GNN training algorithms is developed.
The proposed algorithm guarantees a linear convergence rate to the underlying true parameters of GNNs.
arXiv Detail & Related papers (2020-12-07T02:54:48Z) - Optimization and Generalization Analysis of Transduction through
Gradient Boosting and Application to Multi-scale Graph Neural Networks [60.22494363676747]
It is known that the current graph neural networks (GNNs) are difficult to make themselves deep due to the problem known as over-smoothing.
Multi-scale GNNs are a promising approach for mitigating the over-smoothing problem.
We derive the optimization and generalization guarantees of transductive learning algorithms that include multi-scale GNNs.
arXiv Detail & Related papers (2020-06-15T17:06:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.