論文の概要: PPKE: Knowledge Representation Learning by Path-based Pre-training
- arxiv url: http://arxiv.org/abs/2012.03573v1
- Date: Mon, 7 Dec 2020 10:29:30 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:54:16.487475
- Title: PPKE: Knowledge Representation Learning by Path-based Pre-training
- Title(参考訳): PPKE:パスに基づく事前学習による知識表現学習
- Authors: Bin He, Di Zhou, Jing Xie, Jinghui Xiao, Xin Jiang, Qun Liu
- Abstract要約: PPKEと呼ばれる知識埋め込み学習のためのパスベース事前学習モデルを提案する。
本モデルはリンク予測と関係予測タスクのためのいくつかのベンチマークデータセットで最新の結果を得る。
- 参考スコア(独自算出の注目度): 43.41597219004598
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Entities may have complex interactions in a knowledge graph (KG), such as
multi-step relationships, which can be viewed as graph contextual information
of the entities. Traditional knowledge representation learning (KRL) methods
usually treat a single triple as a training unit, and neglect most of the graph
contextual information exists in the topological structure of KGs. In this
study, we propose a Path-based Pre-training model to learn Knowledge
Embeddings, called PPKE, which aims to integrate more graph contextual
information between entities into the KRL model. Experiments demonstrate that
our model achieves state-of-the-art results on several benchmark datasets for
link prediction and relation prediction tasks, indicating that our model
provides a feasible way to take advantage of graph contextual information in
KGs.
- Abstract(参考訳): エンティティは知識グラフ(kg)内で複雑な相互作用を持ち、例えば多段階関係(multi-step relations)は、エンティティのグラフコンテキスト情報と見なすことができる。
従来の知識表現学習(KRL)法は、通常、訓練単位として1つの三重項を扱い、KGの位相構造にグラフの文脈情報の大半を無視する。
本研究では,知識埋め込み学習のためのパスベース事前学習モデルであるppkeを提案する。
実験により,本モデルがリンク予測および関係予測タスクのためのベンチマークデータセットの最先端結果を達成することを示すとともに,本モデルがKGにおけるグラフコンテキスト情報を活用するための有効な方法であることを示す。
関連論文リスト
- Relational Learning in Pre-Trained Models: A Theory from Hypergraph Recovery Perspective [60.64922606733441]
我々は,関係学習をハイパーグラフリカバリとして形式化する数学的モデルを導入し,基礎モデル(FM)の事前学習について検討する。
我々のフレームワークでは、世界はハイパーグラフとして表現され、データはハイパーエッジからランダムなサンプルとして抽象化される。我々は、このハイパーグラフを復元するための事前学習モデル(PTM)の有効性を理論的に検証し、ミニマックスに近い最適スタイルでデータ効率を解析する。
論文 参考訳(メタデータ) (2024-06-17T06:20:39Z) - Knowledge Graph Embedding: An Overview [42.16033541753744]
本稿では,知識グラフの完成に関する現在の研究状況について概観する。
我々は,KG埋め込み(KGE)設計の2つの主要分野に焦点を当てた:1)距離ベース手法と2)意味マッチング方式である。
次に,2次元および3次元アフィン操作からインスピレーションを得る複合Eと複合E3Dを探索する。
論文 参考訳(メタデータ) (2023-09-21T21:52:42Z) - DGEKT: A Dual Graph Ensemble Learning Method for Knowledge Tracing [20.71423236895509]
知識追跡のための新しいデュアルグラフアンサンブル学習法(DGEKT)を提案する。
DGEKTは、学生の学習相互作用の二重グラフ構造を確立し、不均一な運動概念の関連を捉える。
オンライン知識蒸留は、より優れたモデリング能力のための追加の監督として、すべての訓練に関する予測を提供する。
論文 参考訳(メタデータ) (2022-11-23T11:37:35Z) - KGLM: Integrating Knowledge Graph Structure in Language Models for Link
Prediction [0.0]
我々は、異なるエンティティと関係型を区別することを学ぶ新しいエンティティ/リレーション埋め込み層を導入する。
知識グラフから抽出したトリプルを用いて、この追加埋め込み層を用いて言語モデルをさらに事前学習し、続いて標準微調整フェーズにより、ベンチマークデータセット上のリンク予測タスクに対して、新しい最先端のパフォーマンスが設定されることを示す。
論文 参考訳(メタデータ) (2022-11-04T20:38:12Z) - Schema-aware Reference as Prompt Improves Data-Efficient Knowledge Graph
Construction [57.854498238624366]
本稿では,データ効率のよい知識グラフ構築のためのRAP(Schema-Aware Reference As Prompt)の検索手法を提案する。
RAPは、人間の注釈付きおよび弱教師付きデータから受け継いだスキーマと知識を、各サンプルのプロンプトとして動的に活用することができる。
論文 参考訳(メタデータ) (2022-10-19T16:40:28Z) - SMiLE: Schema-augmented Multi-level Contrastive Learning for Knowledge
Graph Link Prediction [28.87290783250351]
リンク予測は、知識グラフにおけるエンティティ間の欠落したリンクを推測するタスクである。
本稿では,知識グラフリンク予測を行うための新しいマルチレベルコントラスト学習フレームワーク(SMiLE)を提案する。
論文 参考訳(メタデータ) (2022-10-10T17:40:19Z) - I Know What You Do Not Know: Knowledge Graph Embedding via
Co-distillation Learning [16.723470319188102]
知識グラフの埋め込みは、実体と関係のベクトル表現を学習しようとする。
近年の研究では、事前学習された言語モデルを用いて、実体や関係のテキスト情報に基づいて埋め込みを学習している。
我々は,グラフ構造とテキスト情報の補完を利用するKG Embeddingの共蒸留学習手法であるCoLEを提案する。
論文 参考訳(メタデータ) (2022-08-21T07:34:37Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
知識グラフ(KG)は、推薦システムにおいてますます重要な役割を果たす。
既存のGNNベースのモデルは、きめ細かいインテントレベルでのユーザ項目関係の特定に失敗します。
本稿では,新しいモデルである知識グラフベースインテントネットワーク(kgin)を提案する。
論文 参考訳(メタデータ) (2021-02-14T03:21:36Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
実際には、出力記述が最も重要な知識のみをカバーするため、入力知識は十分以上である可能性がある。
我々は、KG-to-textにおけるこのような実践的なシナリオの研究を容易にするために、大規模で挑戦的なデータセットを導入する。
本稿では,元のグラフ情報をより包括的に表現できるマルチグラフ構造を提案する。
論文 参考訳(メタデータ) (2020-04-30T14:16:19Z) - Generative Adversarial Zero-Shot Relational Learning for Knowledge
Graphs [96.73259297063619]
我々は、この厄介なキュレーションを解放するために、新しい定式化、ゼロショット学習を考える。
新たに追加された関係について,テキスト記述から意味的特徴を学習しようと試みる。
我々は,GAN(Generative Adrial Networks)を活用し,テキストと知識グラフ領域の接続を確立する。
論文 参考訳(メタデータ) (2020-01-08T01:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。