DIPPAS: A Deep Image Prior PRNU Anonymization Scheme
- URL: http://arxiv.org/abs/2012.03581v1
- Date: Mon, 7 Dec 2020 10:56:50 GMT
- Title: DIPPAS: A Deep Image Prior PRNU Anonymization Scheme
- Authors: Francesco Picetti, Sara Mandelli, Paolo Bestagini, Vincenzo Lipari and
Stefano Tubaro
- Abstract summary: A typical trace exploited for source device identification is the Photo Response Non-Uniformity (PRNU)
We devise a methodology for suppressing such a trace from natural images without significant impact on image quality.
In a nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an image that is anonymized with respect to the source PRNU.
- Score: 21.227797471108747
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Source device identification is an important topic in image forensics since
it allows to trace back the origin of an image. Its forensics counter-part is
source device anonymization, that is, to mask any trace on the image that can
be useful for identifying the source device. A typical trace exploited for
source device identification is the Photo Response Non-Uniformity (PRNU), a
noise pattern left by the device on the acquired images. In this paper, we
devise a methodology for suppressing such a trace from natural images without
significant impact on image quality. Specifically, we turn PRNU anonymization
into an optimization problem in a Deep Image Prior (DIP) framework. In a
nutshell, a Convolutional Neural Network (CNN) acts as generator and returns an
image that is anonymized with respect to the source PRNU, still maintaining
high visual quality. With respect to widely-adopted deep learning paradigms,
our proposed CNN is not trained on a set of input-target pairs of images.
Instead, it is optimized to reconstruct the PRNU-free image from the original
image under analysis itself. This makes the approach particularly suitable in
scenarios where large heterogeneous databases are analyzed and prevents any
problem due to lack of generalization. Through numerical examples on publicly
available datasets, we prove our methodology to be effective compared to
state-of-the-art techniques.
Related papers
- Chasing Better Deep Image Priors between Over- and Under-parameterization [63.8954152220162]
We study a novel "lottery image prior" (LIP) by exploiting DNN inherent sparsity.
LIPworks significantly outperform deep decoders under comparably compact model sizes.
We also extend LIP to compressive sensing image reconstruction, where a pre-trained GAN generator is used as the prior.
arXiv Detail & Related papers (2024-10-31T17:49:44Z) - DeepFeatureX Net: Deep Features eXtractors based Network for discriminating synthetic from real images [6.75641797020186]
Deepfakes, synthetic images generated by deep learning algorithms, represent one of the biggest challenges in the field of Digital Forensics.
We propose a novel approach based on three blocks called Base Models.
The generalization features extracted from each block are then processed to discriminate the origin of the input image.
arXiv Detail & Related papers (2024-04-24T07:25:36Z) - Latent Diffusion Models for Attribute-Preserving Image Anonymization [4.080920304681247]
This paper presents the first approach to image anonymization based on Latent Diffusion Models (LDMs)
We propose two LDMs for this purpose: CAFLaGE-Base exploits a combination of pre-trained ControlNets, and a new controlling mechanism designed to increase the distance between the real and anonymized images.
arXiv Detail & Related papers (2024-03-21T19:09:21Z) - Attribute-preserving Face Dataset Anonymization via Latent Code
Optimization [64.4569739006591]
We present a task-agnostic anonymization procedure that directly optimize the images' latent representation in the latent space of a pre-trained GAN.
We demonstrate through a series of experiments that our method is capable of anonymizing the identity of the images whilst -- crucially -- better-preserving the facial attributes.
arXiv Detail & Related papers (2023-03-20T17:34:05Z) - Learning Enriched Features for Fast Image Restoration and Enhancement [166.17296369600774]
This paper presents a holistic goal of maintaining spatially-precise high-resolution representations through the entire network.
We learn an enriched set of features that combines contextual information from multiple scales, while simultaneously preserving the high-resolution spatial details.
Our approach achieves state-of-the-art results for a variety of image processing tasks, including defocus deblurring, image denoising, super-resolution, and image enhancement.
arXiv Detail & Related papers (2022-04-19T17:59:45Z) - An Optical physics inspired CNN approach for intrinsic image
decomposition [0.0]
Intrinsic Image Decomposition is an open problem of generating the constituents of an image.
We propose a neural network architecture capable of this decomposition using physics-based parameters derived from the image.
arXiv Detail & Related papers (2021-05-21T00:54:01Z) - Image Restoration by Deep Projected GSURE [115.57142046076164]
Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution.
We propose a new image restoration framework that is based on minimizing a loss function that includes a "projected-version" of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN.
arXiv Detail & Related papers (2021-02-04T08:52:46Z) - The Power of Triply Complementary Priors for Image Compressive Sensing [89.14144796591685]
We propose a joint low-rank deep (LRD) image model, which contains a pair of complementaryly trip priors.
We then propose a novel hybrid plug-and-play framework based on the LRD model for image CS.
To make the optimization tractable, a simple yet effective algorithm is proposed to solve the proposed H-based image CS problem.
arXiv Detail & Related papers (2020-05-16T08:17:44Z) - Exploiting Deep Generative Prior for Versatile Image Restoration and
Manipulation [181.08127307338654]
This work presents an effective way to exploit the image prior captured by a generative adversarial network (GAN) trained on large-scale natural images.
The deep generative prior (DGP) provides compelling results to restore missing semantics, e.g., color, patch, resolution, of various degraded images.
arXiv Detail & Related papers (2020-03-30T17:45:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.