論文の概要: No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems
- arxiv url: http://arxiv.org/abs/2012.03586v1
- Date: Mon, 7 Dec 2020 11:02:44 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 20:54:59.191371
- Title: No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems
- Title(参考訳): 物理を知らない:産業用制御システムにおけるプロセスベースモデルフリー異常検出のレジリエンス
- Authors: Alessandro Erba, Nils Ole Tippenhauer
- Abstract要約: 本稿では,システムの物理的特性に違反する逆スプーフィング信号を生成するための新しい枠組みを提案する。
トップセキュリティ会議で公開された4つの異常検知器を分析します。
- 参考スコア(独自算出の注目度): 97.77117980707081
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, a number of process-based anomaly detection schemes for
Industrial Control Systems were proposed. In this work, we provide the first
systematic analysis of such schemes, and introduce a taxonomy of properties
that are verified by those detection systems. We then present a novel general
framework to generate adversarial spoofing signals that violate physical
properties of the system, and use the framework to analyze four anomaly
detectors published at top security conferences. We find that three of those
detectors are susceptible to a number of adversarial manipulations (e.g.,
spoofing with precomputed patterns), which we call Synthetic Sensor Spoofing
and one is resilient against our attacks. We investigate the root of its
resilience and demonstrate that it comes from the properties that we
introduced. Our attacks reduce the Recall (True Positive Rate) of the attacked
schemes making them not able to correctly detect anomalies. Thus, the
vulnerabilities we discovered in the anomaly detectors show that (despite an
original good detection performance), those detectors are not able to reliably
learn physical properties of the system. Even attacks that prior work was
expected to be resilient against (based on verified properties) were found to
be successful. We argue that our findings demonstrate the need for both more
complete attacks in datasets, and more critical analysis of process-based
anomaly detectors. We plan to release our implementation as open-source,
together with an extension of two public datasets with a set of Synthetic
Sensor Spoofing attacks as generated by our framework.
- Abstract(参考訳): 近年,産業用制御システムのプロセスに基づく異常検出手法が多数提案されている。
本研究では,このようなスキームを初めて体系的に解析し,それらの検出システムによって検証された特性の分類を導入する。
次に,システムの物理的特性に反する逆スプーフ信号を生成するための新しい一般的なフレームワークを提案し,このフレームワークを用いて,トップセキュリティカンファレンスで公開された4つの異常検出を解析する。
これらの検出器のうち3つは、私たちが合成センサースプーフィングと呼ぶ多くの敵の操作(例えば、事前計算されたパターンによるスプーフィング)に影響を受けやすく、1つは攻撃に対して弾力性がある。
レジリエンスの根源を調査し,それが導入した特性に由来することを実証する。
我々の攻撃は攻撃されたスキームのリコール(True Positive Rate)を減らし、異常を正しく検出することができない。
したがって、異常検知器で発見された脆弱性は(元の優れた検出性能にもかかわらず)システムの物理的特性を確実に学習できないことを示している。
以前の作業が(認証されたプロパティに基づく)レジリエントであることが期待される攻撃でさえも成功した。
我々の研究結果は、データセットにおけるより完全な攻撃の必要性と、プロセスベースの異常検知器のより批判的な分析の両方を示している。
フレームワークが生成した一連のSynthetic Sensor Spoofing攻撃による2つの公開データセットの拡張とともに、オープンソースとして実装をリリースする予定です。
関連論文リスト
- FaultGuard: A Generative Approach to Resilient Fault Prediction in Smart Electrical Grids [53.2306792009435]
FaultGuardは、障害タイプとゾーン分類のための最初のフレームワークであり、敵攻撃に耐性がある。
本稿では,ロバスト性を高めるために,低複雑性故障予測モデルとオンライン逆行訓練手法を提案する。
本モデルでは,耐故障予測ベンチマークの最先端を最大0.958の精度で上回っている。
論文 参考訳(メタデータ) (2024-03-26T08:51:23Z) - Kairos: Practical Intrusion Detection and Investigation using
Whole-system Provenance [4.101641763092759]
警告グラフは、システムの実行履歴を記述した構造化監査ログである。
証明に基づく侵入検知システム(PIDS)の開発を促進する4つの共通次元を同定する。
4次元のデシラタを同時に満足させる最初のPIDSであるKAIROSについて述べる。
論文 参考訳(メタデータ) (2023-08-09T16:04:55Z) - Spatial-Frequency Discriminability for Revealing Adversarial Perturbations [53.279716307171604]
敵の摂動に対するディープニューラルネットワークの脆弱性は、コンピュータビジョンコミュニティで広く認識されている。
現在のアルゴリズムは、通常、自然および敵対的なデータの識別的分解を通じて、敵のパターンを検出する。
空間周波数Krawtchouk分解に基づく識別検出器を提案する。
論文 参考訳(メタデータ) (2023-05-18T10:18:59Z) - Towards an Awareness of Time Series Anomaly Detection Models'
Adversarial Vulnerability [21.98595908296989]
本研究では,センサデータに小さな対向摂動のみを加えることで,最先端の異常検出手法の性能を著しく劣化させることを実証した。
いくつかのパブリックデータセットとプライベートデータセットに対して、予測エラー、異常、分類スコアなど、さまざまなスコアを使用する。
敵攻撃に対する異常検出システムの脆弱性を初めて実証した。
論文 参考訳(メタデータ) (2022-08-24T01:55:50Z) - Illusory Attacks: Information-Theoretic Detectability Matters in Adversarial Attacks [76.35478518372692]
エプシロン・イリューソリー(epsilon-illusory)は、シーケンシャルな意思決定者に対する敵対的攻撃の新たな形態である。
既存の攻撃と比較して,エプシロン・イリューソリーの自動検出は極めて困難である。
以上の結果から, より優れた異常検知器, 効果的なハードウェアおよびシステムレベルの防御の必要性が示唆された。
論文 参考訳(メタデータ) (2022-07-20T19:49:09Z) - Adversarially Robust One-class Novelty Detection [83.1570537254877]
既存のノベルティ検出器は敵の例に感受性があることが示される。
本稿では, 新規性検知器の潜伏空間を制御し, 敵に対する堅牢性を向上する防衛戦略を提案する。
論文 参考訳(メタデータ) (2021-08-25T10:41:29Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
本研究では,CPSの異常検出器とルールチェッカーを同時に回避する対向攻撃を提案する。
既存の勾配に基づくアプローチにインスパイアされた我々の敵攻撃は、センサーとアクチュエーターの値にノイズを発生させ、遺伝的アルゴリズムを使って後者を最適化する。
実世界の2つの重要なインフラテストベッドに対するアプローチを実装し、検出器の分類精度を平均50%以上下げることに成功した。
論文 参考訳(メタデータ) (2021-05-22T12:19:03Z) - Detecting Backdoors in Neural Networks Using Novel Feature-Based Anomaly
Detection [16.010654200489913]
本稿では,ニューラルネットワークのバックドア攻撃に対する新たな防御法を提案する。
バックドアネットワークの機能抽出層が新機能を組み込んでトリガーの存在を検出するという直感に基づいている。
バックドアの検出には、クリーンな検証データに基づいて訓練された2つの相乗的異常検出器を使用する。
論文 参考訳(メタデータ) (2020-11-04T20:33:51Z) - Investigating Robustness of Adversarial Samples Detection for Automatic
Speaker Verification [78.51092318750102]
本研究は,ASVシステムに対して,別個の検出ネットワークによる敵攻撃から防御することを提案する。
VGGライクな二分分類検出器を導入し、対向サンプルの検出に有効であることが実証された。
論文 参考訳(メタデータ) (2020-06-11T04:31:56Z) - Can't Boil This Frog: Robustness of Online-Trained Autoencoder-Based
Anomaly Detectors to Adversarial Poisoning Attacks [26.09388179354751]
本研究は,オンライン学習型オートエンコーダを用いたアタック検出装置に対する中毒攻撃に焦点を当てた最初の研究である。
提案アルゴリズムは, オートエンコーダ検出器によって検出されない標的攻撃の原因となる毒のサンプルを生成することができることを示す。
この発見は、サイバー物理領域で使用されるニューラルネットワークベースの攻撃検出器が、他の問題領域よりも毒性に強いことを示唆している。
論文 参考訳(メタデータ) (2020-02-07T12:41:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。