Perturbation Theory in the Complex Plane: Exceptional Points and Where
to Find Them
- URL: http://arxiv.org/abs/2012.03688v2
- Date: Tue, 2 Feb 2021 12:30:40 GMT
- Title: Perturbation Theory in the Complex Plane: Exceptional Points and Where
to Find Them
- Authors: Antoine Marie and Hugh G. A. Burton and Pierre-Fran\c{c}ois Loos
- Abstract summary: We observe that the physics of a quantum system is intimately connected to the position of complex-valued energy singularities.
We highlight work on the convergence behaviour of perturbative series obtained within Moller--Plesset perturbation theory.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We explore the non-Hermitian extension of quantum chemistry in the complex
plane and its link with perturbation theory. We observe that the physics of a
quantum system is intimately connected to the position of complex-valued energy
singularities, known as exceptional points. After presenting the fundamental
concepts of non-Hermitian quantum chemistry in the complex plane, including the
mean-field Hartree--Fock approximation and Rayleigh--Schr\"odinger perturbation
theory, we provide a historical overview of the various research activities
that have been performed on the physics of singularities. In particular, we
highlight seminal work on the convergence behaviour of perturbative series
obtained within M{\o}ller--Plesset perturbation theory, and its links with
quantum phase transitions. We also discuss several resummation techniques (such
as Pad\'e and quadratic approximants) that can improve the overall accuracy of
the M{\o}ller--Plesset perturbative series in both convergent and divergent
cases. Each of these points is illustrated using the Hubbard dimer at half
filling, which proves to be a versatile model for understanding the subtlety of
analytically-continued perturbation theory in the complex plane.
Related papers
- Observation of quantum superposition of topological defects in a trapped ion quantum simulator [10.307677845109378]
We report the observation of quantum superposition of topological defects in a trapped-ion quantum simulator.
Our work provides useful tools for non-equilibrium dynamics in quantum Kibble-Zurek physics.
arXiv Detail & Related papers (2024-10-20T13:27:13Z) - Exceptional entanglement in non-Hermitian fermionic models [1.8853792538756093]
Exotic singular objects, known as exceptional points, are ubiquitous in non-Hermitian physics.
From the entanglement spectrum, zero-energy exceptional modes are found to be distinct from normal zero modes or topological boundary modes.
arXiv Detail & Related papers (2023-04-13T12:40:11Z) - Stochastic Mechanics and the Unification of Quantum Mechanics with
Brownian Motion [0.0]
We show that non-relativistic quantum mechanics of a single spinless particle on a flat space can be described by a process that is rotated in the complex plane.
We then extend this theory to relativistic theories on integrals using the framework of second order geometry.
arXiv Detail & Related papers (2023-01-13T10:40:27Z) - Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches [0.0]
We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
arXiv Detail & Related papers (2022-10-27T18:00:01Z) - Entanglement dynamics of spins using a few complex trajectories [77.34726150561087]
We consider two spins initially prepared in a product of coherent states and study their entanglement dynamics.
We adopt an approach that allowed the derivation of a semiclassical formula for the linear entropy of the reduced density operator.
arXiv Detail & Related papers (2021-08-13T01:44:24Z) - Quantum Algorithms for Open Lattice Field Theory [0.0]
We develop non-Hermitian quantum circuits and explore their promise on a benchmark, the quantum one-dimensional Ising model with complex longitudinal magnetic field.
The development of attractors past critical points in the space of complex couplings indicates a potential for study on near-term noisy hardware.
arXiv Detail & Related papers (2020-12-09T19:00:18Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Entanglement and Complexity of Purification in (1+1)-dimensional free
Conformal Field Theories [55.53519491066413]
We find pure states in an enlarged Hilbert space that encode the mixed state of a quantum field theory as a partial trace.
We analyze these quantities for two intervals in the vacuum of free bosonic and Ising conformal field theories.
arXiv Detail & Related papers (2020-09-24T18:00:13Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.