Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches
- URL: http://arxiv.org/abs/2210.15682v1
- Date: Thu, 27 Oct 2022 18:00:01 GMT
- Title: Meson content of entanglement spectra after integrable and nonintegrable
quantum quenches
- Authors: Johannes Knaute
- Abstract summary: We calculate the time evolution of the lower part of the entanglement spectrum and return rate functions after global quantum quenches in the Ising model.
Our analyses provide a deeper understanding on the role of quantum information quantities for the dynamics of emergent phenomena reminiscent to systems in high-energy physics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We use tensor network simulations to calculate the time evolution of the
lower part of the entanglement spectrum and return rate functions after global
quantum quenches in the Ising model. We consider ground state quenches towards
mesonic parameter ranges with confined fermion pairs as nonperturbative bound
states in a semiclassical regime and the relativistic E$_8$ theory. We find
that in both cases only the dominant eigenvalue of the modular Hamiltonian
fully encodes the meson content of the quantum many-body system or quantum
field theory, giving rise to nearly identical entanglement oscillations in the
entanglement entropy. When the initial state is prepared in the paramagnetic
phase, the return rate density exhibits regular cusps at unequally spaced
positions, signaling the appearance of dynamical quantum phase transitions, at
which the entanglement spectrum remains gapped. Our analyses provide a deeper
understanding on the role of quantum information quantities for the dynamics of
emergent phenomena reminiscent to systems in high-energy physics.
Related papers
- Scaled quantum theory. The bouncing ball problem [0.0]
The standard bouncing ball problem is analyzed under the presence of a gravitational field and harmonic potential.
The quantum-classical transition of the density matrix is described by the linear scaled von Neumann equation for mixed states.
arXiv Detail & Related papers (2024-10-14T10:09:48Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Spreading of a local excitation in a Quantum Hierarchical Model [62.997667081978825]
We study the dynamics of the quantum Dyson hierarchical model in its paramagnetic phase.
An initial state made by a local excitation of the paramagnetic ground state is considered.
A localization mechanism is found and the excitation remains close to its initial position at arbitrary times.
arXiv Detail & Related papers (2022-07-14T10:05:20Z) - Loschmidt amplitude spectrum in dynamical quantum phase transitions [0.0]
We study how the system behaves in the vicinity of dynamical quantum phase transitions (DQPTs)
Our findings provide a better understanding of the characteristics of the out-of-equilibrium system around DQPT.
arXiv Detail & Related papers (2022-03-14T10:54:31Z) - Exact-WKB analysis for SUSY and quantum deformed potentials: Quantum
mechanics with Grassmann fields and Wess-Zumino terms [0.0]
Quantum deformed potentials arise naturally in quantum mechanical systems of one bosonic coordinate coupled to $N_f$ Grassmann valued fermionic coordinates.
Using exact WKB, we derive exact quantization condition and its median resummation.
For quantum deformed triple-well potential, we demonstrate the P-NP relation, by computing period integrals and Mellin transform.
arXiv Detail & Related papers (2021-11-10T20:35:38Z) - From geometry to coherent dissipative dynamics in quantum mechanics [68.8204255655161]
We work out the case of finite-level systems, for which it is shown by means of the corresponding contact master equation.
We describe quantum decays in a 2-level system as coherent and continuous processes.
arXiv Detail & Related papers (2021-07-29T18:27:38Z) - Breakdown of quantum-classical correspondence and dynamical generation
of entanglement [6.167267225728292]
We study the generation of quantum entanglement induced by an ideal Fermi gas confined in a chaotic cavity.
We find that the breakdown of the quantum-classical correspondence of particle motion, via dramatically changing the spatial structure of many-body wavefunction, leads to profound changes of the entanglement structure.
arXiv Detail & Related papers (2021-04-14T03:09:24Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.