Nonnegative Matrix Factorization with Zellner Penalty
- URL: http://arxiv.org/abs/2012.03889v1
- Date: Mon, 7 Dec 2020 18:11:02 GMT
- Title: Nonnegative Matrix Factorization with Zellner Penalty
- Authors: Matthew Corsetti and Ernest Fokou\'e
- Abstract summary: Nonnegative matrix factorization (NMF) is a relatively new unsupervised learning algorithm that decomposes a nonnegative data matrix into a parts-based, lower dimensional, linear representation of the data.
In this paper, we propose Zellner nonnegative matrix factorization (ZNMF), which uses data-dependent auxiliary constraints.
We assess the facial recognition performance of the ZNMF algorithm and several other well-known constrained NMF algorithms using the Cambridge ORL database.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Nonnegative matrix factorization (NMF) is a relatively new unsupervised
learning algorithm that decomposes a nonnegative data matrix into a
parts-based, lower dimensional, linear representation of the data. NMF has
applications in image processing, text mining, recommendation systems and a
variety of other fields. Since its inception, the NMF algorithm has been
modified and explored by numerous authors. One such modification involves the
addition of auxiliary constraints to the objective function of the
factorization. The purpose of these auxiliary constraints is to impose
task-specific penalties or restrictions on the objective function. Though many
auxiliary constraints have been studied, none have made use of data-dependent
penalties. In this paper, we propose Zellner nonnegative matrix factorization
(ZNMF), which uses data-dependent auxiliary constraints. We assess the facial
recognition performance of the ZNMF algorithm and several other well-known
constrained NMF algorithms using the Cambridge ORL database.
Related papers
- Collaborative filtering based on nonnegative/binary matrix factorization [0.0]
We propose a modified NBMF algorithm that can be applied to collaborative filtering where data are sparse.
In the modified method, unrated elements in a rating matrix are masked, which improves the collaborative filtering performance.
arXiv Detail & Related papers (2024-10-14T11:10:15Z) - Non-Negative Matrix Factorization with Scale Data Structure Preservation [23.31865419578237]
The model described in this paper belongs to the family of non-negative matrix factorization methods designed for data representation and dimension reduction.
The idea is to add, to the NMF cost function, a penalty term to impose a scale relationship between the pairwise similarity matrices of the original and transformed data points.
The proposed clustering algorithm is compared to some existing NMF-based algorithms and to some manifold learning-based algorithms when applied to some real-life datasets.
arXiv Detail & Related papers (2022-09-22T09:32:18Z) - Unitary Approximate Message Passing for Matrix Factorization [90.84906091118084]
We consider matrix factorization (MF) with certain constraints, which finds wide applications in various areas.
We develop a Bayesian approach to MF with an efficient message passing implementation, called UAMPMF.
We show that UAMPMF significantly outperforms state-of-the-art algorithms in terms of recovery accuracy, robustness and computational complexity.
arXiv Detail & Related papers (2022-07-31T12:09:32Z) - Log-based Sparse Nonnegative Matrix Factorization for Data
Representation [55.72494900138061]
Nonnegative matrix factorization (NMF) has been widely studied in recent years due to its effectiveness in representing nonnegative data with parts-based representations.
We propose a new NMF method with log-norm imposed on the factor matrices to enhance the sparseness.
A novel column-wisely sparse norm, named $ell_2,log$-(pseudo) norm, is proposed to enhance the robustness of the proposed method.
arXiv Detail & Related papers (2022-04-22T11:38:10Z) - Initialization for Nonnegative Matrix Factorization: a Comprehensive
Review [0.0]
Non-negative factorization (NMF) has become a popular method for representing meaningful data by extracting a non-negative basis from an non-negative data matrix.
Some numerical results to illustrate the performance of each method are presented.
arXiv Detail & Related papers (2021-09-08T18:49:41Z) - Feature Weighted Non-negative Matrix Factorization [92.45013716097753]
We propose the Feature weighted Non-negative Matrix Factorization (FNMF) in this paper.
FNMF learns the weights of features adaptively according to their importances.
It can be solved efficiently with the suggested optimization algorithm.
arXiv Detail & Related papers (2021-03-24T21:17:17Z) - Self-supervised Symmetric Nonnegative Matrix Factorization [82.59905231819685]
Symmetric nonnegative factor matrix (SNMF) has demonstrated to be a powerful method for data clustering.
Inspired by ensemble clustering that aims to seek better clustering results, we propose self-supervised SNMF (S$3$NMF)
We take advantage of the sensitivity to code characteristic of SNMF, without relying on any additional information.
arXiv Detail & Related papers (2021-03-02T12:47:40Z) - Joint Deep Reinforcement Learning and Unfolding: Beam Selection and
Precoding for mmWave Multiuser MIMO with Lens Arrays [54.43962058166702]
millimeter wave (mmWave) multiuser multiple-input multiple-output (MU-MIMO) systems with discrete lens arrays have received great attention.
In this work, we investigate the joint design of a beam precoding matrix for mmWave MU-MIMO systems with DLA.
arXiv Detail & Related papers (2021-01-05T03:55:04Z) - Nonnegative Matrix Factorization with Toeplitz Penalty [0.0]
Nonnegative Matrix Factorization (NMF) is an unsupervised learning algorithm that produces a linear, parts-based approximation of a data matrix.
We propose a new NMF algorithm that makes use of non-data dependent auxiliary constraints.
arXiv Detail & Related papers (2020-12-07T13:49:23Z) - Algorithms for Nonnegative Matrix Factorization with the
Kullback-Leibler Divergence [20.671178429005973]
Kullback-Leibler (KL) divergence is one of the most widely used objective function for nonnegative matrix factorization (NMF)
We propose three new algorithms that guarantee the non-increasingness of the objective function.
We conduct extensive numerical experiments to provide a comprehensive picture of the performances of the KL NMF algorithms.
arXiv Detail & Related papers (2020-10-05T11:51:39Z) - Positive Semidefinite Matrix Factorization: A Connection with Phase
Retrieval and Affine Rank Minimization [71.57324258813674]
We show that PSDMF algorithms can be designed based on phase retrieval (PR) and affine rank minimization (ARM) algorithms.
Motivated by this idea, we introduce a new family of PSDMF algorithms based on iterative hard thresholding (IHT)
arXiv Detail & Related papers (2020-07-24T06:10:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.