Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance
- URL: http://arxiv.org/abs/2012.04002v2
- Date: Fri, 16 Apr 2021 14:43:43 GMT
- Title: Stochastic optimization with momentum: convergence, fluctuations, and
traps avoidance
- Authors: A. Barakat, P. Bianchi, W. Hachem, and Sh. Schechtman
- Abstract summary: In this paper, a general optimization procedure is studied, unifying several variants of the gradient descent such as, among others, the heavy ball method, the Nesterov Accelerated Gradient (S-NAG), and the widely used Adam method.
The avoidance is studied as a noisy discretization of a non-autonomous ordinary differential equation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, a general stochastic optimization procedure is studied,
unifying several variants of the stochastic gradient descent such as, among
others, the stochastic heavy ball method, the Stochastic Nesterov Accelerated
Gradient algorithm (S-NAG), and the widely used Adam algorithm. The algorithm
is seen as a noisy Euler discretization of a non-autonomous ordinary
differential equation, recently introduced by Belotto da Silva and Gazeau,
which is analyzed in depth. Assuming that the objective function is non-convex
and differentiable, the stability and the almost sure convergence of the
iterates to the set of critical points are established. A noteworthy special
case is the convergence proof of S-NAG in a non-convex setting. Under some
assumptions, the convergence rate is provided under the form of a Central Limit
Theorem. Finally, the non-convergence of the algorithm to undesired critical
points, such as local maxima or saddle points, is established. Here, the main
ingredient is a new avoidance of traps result for non-autonomous settings,
which is of independent interest.
Related papers
- An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness [15.656614304616006]
This paper investigates a class of bilevel optimization problems where the upper-level function is non- unbounded smoothness and the lower-level problem is strongly convex.
These problems have significant applications in data learning, such as text classification using neural networks.
arXiv Detail & Related papers (2024-09-28T02:30:44Z) - The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise [17.493808856903303]
One fundamental challenge in analyzing an approximation algorithm is to establish its stability.
In this paper, we extend the celebrated Borkar-Meyn theorem for stability bounded from the Martingale difference noise setting to the Markovian noise setting.
Central to our analysis is the diminishing rate of change of a few functions, which is implied by both a form of strong law of large numbers and a commonly used V4 Lynov drift condition.
arXiv Detail & Related papers (2024-01-15T17:20:17Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
We propose algorithms with high-probability convergence results under less restrictive assumptions.
These results justify the usage of the considered methods for solving problems that do not fit standard functional classes in optimization.
arXiv Detail & Related papers (2023-02-02T10:37:23Z) - A Gradient Smoothed Functional Algorithm with Truncated Cauchy Random
Perturbations for Stochastic Optimization [10.820943271350442]
We present a convex gradient algorithm for minimizing a smooth objective function that is an expectation over noisy cost samples.
We also show that our algorithm avoids the ratelibria, implying convergence to local minima.
arXiv Detail & Related papers (2022-07-30T18:50:36Z) - Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - An Algebraically Converging Stochastic Gradient Descent Algorithm for
Global Optimization [14.336473214524663]
A key component in the algorithm is the randomness based on the value of the objective function.
We prove the convergence of the algorithm with an algebra and tuning in the parameter space.
We present several numerical examples to demonstrate the efficiency and robustness of the algorithm.
arXiv Detail & Related papers (2022-04-12T16:27:49Z) - On the Convergence of mSGD and AdaGrad for Stochastic Optimization [0.696125353550498]
convex descent (SGD) has been intensively developed and extensively applied in machine learning in the past decade.
Some modified SGD-type algorithms, which outperform the SGD in many competitions and applications in terms of convergence rate and accuracy, such as momentum-based SGD (mSGD) and adaptive gradient optimization (AdaGrad)
We focus on convergence analysis of mSGD and AdaGrad for any smooth (possibly non-possibly non-possibly non-possibly) loss functions in machine learning.
arXiv Detail & Related papers (2022-01-26T22:02:21Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
We introduce the expected co-coercivity condition, explain its benefits, and provide the first last-iterate convergence guarantees of SGDA and SCO.
We prove linear convergence of both methods to a neighborhood of the solution when they use constant step-size.
Our convergence guarantees hold under the arbitrary sampling paradigm, and we give insights into the complexity of minibatching.
arXiv Detail & Related papers (2021-06-30T18:32:46Z) - On the Convergence of Stochastic Extragradient for Bilinear Games with
Restarted Iteration Averaging [96.13485146617322]
We present an analysis of the ExtraGradient (SEG) method with constant step size, and present variations of the method that yield favorable convergence.
We prove that when augmented with averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure.
arXiv Detail & Related papers (2021-06-30T17:51:36Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
adversary-resilient distributed optimization, in which.
machines can independently compute gradients, and cooperate.
Our algorithm is based on a new concentration technique, and its sample complexity.
It is very practical: it improves upon the performance of all prior methods when no.
setting machines are present.
arXiv Detail & Related papers (2020-12-28T17:19:32Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.