論文の概要: Adaptive Sampling for Estimating Distributions: A Bayesian Upper
Confidence Bound Approach
- arxiv url: http://arxiv.org/abs/2012.04137v1
- Date: Tue, 8 Dec 2020 00:53:34 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-18 04:00:38.402715
- Title: Adaptive Sampling for Estimating Distributions: A Bayesian Upper
Confidence Bound Approach
- Title(参考訳): 分布推定のための適応サンプリング:ベイズ的上部信頼境界アプローチ
- Authors: Dhruva Kartik, Neeraj Sood, Urbashi Mitra, Tara Javidi
- Abstract要約: 既存の高信頼境界(UCB)ベースのアプローチのベイズ多様体が提案される。
ロサンゼルス郡のセロプレバレンス調査から得られたデータを用いて,この戦略の有効性を考察した。
- 参考スコア(独自算出の注目度): 30.76846526324949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of adaptive sampling for estimating probability mass functions
(pmf) uniformly well is considered. Performance of the sampling strategy is
measured in terms of the worst-case mean squared error. A Bayesian variant of
the existing upper confidence bound (UCB) based approaches is proposed. It is
shown analytically that the performance of this Bayesian variant is no worse
than the existing approaches. The posterior distribution on the pmfs in the
Bayesian setting allows for a tighter computation of upper confidence bounds
which leads to significant performance gains in practice. Using this approach,
adaptive sampling protocols are proposed for estimating SARS-CoV-2
seroprevalence in various groups such as location and ethnicity. The
effectiveness of this strategy is discussed using data obtained from a
seroprevalence survey in Los Angeles county.
- Abstract(参考訳): 確率質量関数(pmf)を均一に推定するための適応サンプリングの問題点を考察する。
サンプリング戦略の性能は、最悪のケースの平均2乗誤差の観点から測定する。
既存の上信頼境界(UCB)に基づくアプローチのベイズ変種を提案する。
解析学的に、このベイズ変種の性能は既存のアプローチよりも悪いものではないことが示されている。
ベイジアン設定におけるpmfsの後方分布は、高信頼境界のより厳密な計算を可能にし、実際に顕著な性能向上をもたらす。
この手法を用いて,SARS-CoV-2セロプレバレンスを位置や民族など様々なグループで推定するための適応サンプリングプロトコルを提案する。
ロサンゼルス郡のセロプレバレンス調査から得られたデータを用いて,この戦略の有効性を考察した。
関連論文リスト
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning [5.346298077607419]
この課題を解決するために,半教師付き学習を用いた密度比推定に基づくベイズ最適化を提案する。
本手法の実証的な結果といくつかの基本手法を,未ラベルの点サンプリングと固定サイズのプールを持つ2つの異なるシナリオで示す。
論文 参考訳(メタデータ) (2023-05-24T23:01:56Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
コンフォーマル化補正ニューラル変分推論(CANVI)を提案する。
CANVIは各候補に基づいて共形予測器を構築し、予測効率と呼ばれる計量を用いて予測器を比較し、最も効率的な予測器を返す。
我々は,CANVIが生成する領域の予測効率の低い境界を証明し,その近似に基づいて,後部近似の品質と予測領域の予測効率の関係について検討する。
論文 参考訳(メタデータ) (2023-05-23T17:24:04Z) - Double Robust Bayesian Inference on Average Treatment Effects [2.458652618559425]
不整合下での平均処理効果(ATE)に対する二重頑健なベイズ推定法を提案する。
新しいベイズ的アプローチでは、まず条件付き平均関数の事前分布を調整し、得られた ATE の後方分布を補正する。
論文 参考訳(メタデータ) (2022-11-29T15:32:25Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
変分推論(VI)はベイズ推論における正確なサンプリングの代替として人気がある。
重要度サンプリング(IS)は、ベイズ近似推論手順の推定を微調整し、偏りを逸脱するためにしばしば用いられる。
近似ベイズ推論のための最適化手法とサンプリング手法の新たな組み合わせを提案する。
論文 参考訳(メタデータ) (2021-06-30T11:00:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
サンプリングフリー変動推論のための後方近似のより効率的なパラメータ化を提案する。
提案手法は,標準回帰問題に対する競合的な結果をもたらし,大規模画像分類タスクに適している。
論文 参考訳(メタデータ) (2021-03-15T16:16:18Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
我々は,複数のロギングポリシからオフ政治評価を行い,それぞれが一定のサイズ,すなわち階層化サンプリングのデータセットを生成する。
複数ロガーのOPE推定器は,任意のインスタンス,すなわち効率のよいインスタンスに対して最小分散である。
論文 参考訳(メタデータ) (2020-10-21T13:43:48Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
本稿では,モデルが点予測ではなく,その予測に対して不確実な推定を行うような,頑健な予測推論の手順について述べる。
本稿では, トレーニング集団の周囲に$f$-divergence のボールを用いて, 任意のテスト分布に対して適切なカバレッジレベルを与える予測セットを生成する手法を提案する。
私たちの方法論の重要な構成要素は、将来のデータシフトの量を見積り、それに対する堅牢性を構築することです。
論文 参考訳(メタデータ) (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
後続正則化に基づく近似ベイズ推定法を開発した。
前立腺癌の予後モデルを世界規模で導入する上で,本手法の有用性を実証する。
論文 参考訳(メタデータ) (2020-06-26T13:50:19Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
確率分布が未知な分布の不確実性の下でBQOについて検討する。
標準的なBQOアプローチは、固定されたサンプル集合が与えられたときの真の期待目標のモンテカルロ推定を最大化する。
この目的のために,新しい後方サンプリングに基づくアルゴリズム,すなわち分布的に堅牢なBQO(DRBQO)を提案する。
論文 参考訳(メタデータ) (2020-01-19T12:00:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。