Adaptive Sampling for Estimating Distributions: A Bayesian Upper
Confidence Bound Approach
- URL: http://arxiv.org/abs/2012.04137v1
- Date: Tue, 8 Dec 2020 00:53:34 GMT
- Title: Adaptive Sampling for Estimating Distributions: A Bayesian Upper
Confidence Bound Approach
- Authors: Dhruva Kartik, Neeraj Sood, Urbashi Mitra, Tara Javidi
- Abstract summary: A Bayesian variant of the existing upper confidence bound (UCB) based approaches is proposed.
The effectiveness of this strategy is discussed using data obtained from a seroprevalence survey in Los Angeles county.
- Score: 30.76846526324949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The problem of adaptive sampling for estimating probability mass functions
(pmf) uniformly well is considered. Performance of the sampling strategy is
measured in terms of the worst-case mean squared error. A Bayesian variant of
the existing upper confidence bound (UCB) based approaches is proposed. It is
shown analytically that the performance of this Bayesian variant is no worse
than the existing approaches. The posterior distribution on the pmfs in the
Bayesian setting allows for a tighter computation of upper confidence bounds
which leads to significant performance gains in practice. Using this approach,
adaptive sampling protocols are proposed for estimating SARS-CoV-2
seroprevalence in various groups such as location and ethnicity. The
effectiveness of this strategy is discussed using data obtained from a
seroprevalence survey in Los Angeles county.
Related papers
- Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
We develop a new method for generating prediction sets that combines the flexibility of conformal methods with an estimate of the conditional distribution.
Our method consistently outperforms existing approaches in terms of conditional coverage.
arXiv Detail & Related papers (2024-07-01T20:44:48Z) - Density Ratio Estimation-based Bayesian Optimization with Semi-Supervised Learning [5.346298077607419]
We propose density ratio estimation-based Bayesian optimization with semi-supervised learning to solve this challenge.
We show the empirical results of our methods and several baseline methods in two distinct scenarios with unlabeled point sampling and a fixed-size pool.
arXiv Detail & Related papers (2023-05-24T23:01:56Z) - Variational Inference with Coverage Guarantees in Simulation-Based Inference [18.818573945984873]
We propose Conformalized Amortized Neural Variational Inference (CANVI)
CANVI constructs conformalized predictors based on each candidate, compares the predictors using a metric known as predictive efficiency, and returns the most efficient predictor.
We prove lower bounds on the predictive efficiency of the regions produced by CANVI and explore how the quality of a posterior approximation relates to the predictive efficiency of prediction regions based on that approximation.
arXiv Detail & Related papers (2023-05-23T17:24:04Z) - Double Robust Bayesian Inference on Average Treatment Effects [2.458652618559425]
We propose a double robust Bayesian inference procedure on the average treatment effect (ATE) under unconfoundedness.
For our new Bayesian approach, we first adjust the prior distributions of the conditional mean functions, and then correct the posterior distribution of the resulting ATE.
arXiv Detail & Related papers (2022-11-29T15:32:25Z) - Variational Refinement for Importance Sampling Using the Forward
Kullback-Leibler Divergence [77.06203118175335]
Variational Inference (VI) is a popular alternative to exact sampling in Bayesian inference.
Importance sampling (IS) is often used to fine-tune and de-bias the estimates of approximate Bayesian inference procedures.
We propose a novel combination of optimization and sampling techniques for approximate Bayesian inference.
arXiv Detail & Related papers (2021-06-30T11:00:24Z) - Sampling-free Variational Inference for Neural Networks with
Multiplicative Activation Noise [51.080620762639434]
We propose a more efficient parameterization of the posterior approximation for sampling-free variational inference.
Our approach yields competitive results for standard regression problems and scales well to large-scale image classification tasks.
arXiv Detail & Related papers (2021-03-15T16:16:18Z) - Optimal Off-Policy Evaluation from Multiple Logging Policies [77.62012545592233]
We study off-policy evaluation from multiple logging policies, each generating a dataset of fixed size, i.e., stratified sampling.
We find the OPE estimator for multiple loggers with minimum variance for any instance, i.e., the efficient one.
arXiv Detail & Related papers (2020-10-21T13:43:48Z) - Robust Validation: Confident Predictions Even When Distributions Shift [19.327409270934474]
We describe procedures for robust predictive inference, where a model provides uncertainty estimates on its predictions rather than point predictions.
We present a method that produces prediction sets (almost exactly) giving the right coverage level for any test distribution in an $f$-divergence ball around the training population.
An essential component of our methodology is to estimate the amount of expected future data shift and build robustness to it.
arXiv Detail & Related papers (2020-08-10T17:09:16Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Distributionally Robust Bayesian Quadrature Optimization [60.383252534861136]
We study BQO under distributional uncertainty in which the underlying probability distribution is unknown except for a limited set of its i.i.d. samples.
A standard BQO approach maximizes the Monte Carlo estimate of the true expected objective given the fixed sample set.
We propose a novel posterior sampling based algorithm, namely distributionally robust BQO (DRBQO) for this purpose.
arXiv Detail & Related papers (2020-01-19T12:00:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.