Quantum-to-classical transition via quantum cellular automata
- URL: http://arxiv.org/abs/2012.04237v4
- Date: Sun, 1 Aug 2021 17:19:27 GMT
- Title: Quantum-to-classical transition via quantum cellular automata
- Authors: Pedro C.S. Costa
- Abstract summary: A quantum cellular automaton (QCA) is an abstract model consisting of an array of finite-dimensional quantum systems.
We show that the emergent-effective result of the former microscopic discrete model converges to the diffusion equation and to a classical transport equation.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: A quantum cellular automaton (QCA) is an abstract model consisting of an
array of finite-dimensional quantum systems that evolves in discrete time by
local unitary operations. Here we propose a simple coarse-graining map, where
the spatial structure of the QCA is merged into effective ones. Starting with a
QCA that simulates the Dirac equation, we apply this coarse-graining map
recursively until we get its effective dynamics in the semiclassical limit,
which can be described by a classical cellular automaton. We show that the
emergent-effective result of the former microscopic discrete model converges to
the diffusion equation and to a classical transport equation under a specific
initial condition. Therefore, QCA is a good model to validate the
quantum-to-classical transition.
Related papers
- Classification of qubit cellular automata on hypercubic lattices [45.279573215172285]
We classify qubit QCAs on lattices $mathbb Zs$ with von Neumann neighbourhood scheme, in terms of feasibility as finite depth quantum circuits.
We show the most general structure of such quantum circuit and use its characterisation to simulate a few steps of evolution and evaluate the rate of entanglement production between one cell and its surroundings.
arXiv Detail & Related papers (2024-08-08T14:42:39Z) - A perturbative approach to the solution of the Thirring quantum cellular automaton [42.205102271729665]
The Thirring Quantum Cellular Automaton (QCA) describes the discrete time dynamics of local fermionic modes that evolve according to one step of the Dirac cellular automaton followed by the most general on-site number-preserving interaction, and serves as the QCA counterpart of the Thirring model in quantum field theory.
arXiv Detail & Related papers (2024-06-28T13:44:10Z) - Unitary Basis Transformations in Mixed Quantum-Classical Dynamics [0.0]
A common approach to minimizing the cost of quantum computations is by transforming a quantum system into a basis that can be optimally truncated.
Here, we derive classical equations of motion subjected to similar unitary transformations, and propose their integration into mixed quantum-classical dynamics.
We demonstrate the potential of the resulting approach by means of surface hopping calculations of an electronic carrier scattering onto a single impurity in the presence of phonons.
arXiv Detail & Related papers (2024-04-24T03:08:05Z) - First-Order Phase Transition of the Schwinger Model with a Quantum Computer [0.0]
We explore the first-order phase transition in the lattice Schwinger model in the presence of a topological $theta$-term.
We show that the electric field density and particle number, observables which reveal the phase structure of the model, can be reliably obtained from the quantum hardware.
arXiv Detail & Related papers (2023-12-20T08:27:49Z) - Mean-field dynamics of open quantum systems with collective
operator-valued rates: validity and application [0.0]
We consider a class of open quantum many-body Lindblad dynamics characterized by an all-to-all coupling Hamiltonian.
We study the time evolution in the limit of infinitely large systems, and we demonstrate the exactness of the mean-field equations for the dynamics of average operators.
Our results allow for a rigorous and systematic investigation of the impact of quantum effects on paradigmatic classical models.
arXiv Detail & Related papers (2023-02-08T15:58:39Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Iterative Qubit Coupled Cluster using only Clifford circuits [36.136619420474766]
An ideal state preparation protocol can be characterized by being easily generated classically.
We propose a method that meets these requirements by introducing a variant of the iterative qubit coupled cluster (iQCC)
We demonstrate the algorithm's correctness in ground-state simulations and extend our study to complex systems like the titanium-based compound Ti(C5H5)(CH3)3 with a (20, 20) active space.
arXiv Detail & Related papers (2022-11-18T20:31:10Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Directed percolation in non-unitary quantum cellular automata [0.0]
We construct a non-unitary Quantum Cellular Automaton that generalises the Domany-Kinzel cellular automaton.
We study the resulting dynamical evolution using the numerical simulations using the tensor network iTEBD algorithm.
arXiv Detail & Related papers (2021-05-04T10:10:16Z) - Quantum and semi-classical aspects of confined systems with variable
mass [0.3149883354098941]
We explore the quantization of classical models with position-dependent mass terms constrained to a bounded interval in the canonical position.
For a non-separable function $Pi(q,p)$, a purely quantum minimal-coupling term arises in the form of a vector potential for both the quantum and semi-classical models.
arXiv Detail & Related papers (2020-05-28T18:50:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.