Universality of critical dynamics with finite entanglement
- URL: http://arxiv.org/abs/2301.09681v1
- Date: Mon, 23 Jan 2023 19:23:54 GMT
- Title: Universality of critical dynamics with finite entanglement
- Authors: Nicholas E. Sherman, Alexander Avdoshkin, Joel E. Moore
- Abstract summary: We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When a system is swept through a quantum critical point, the quantum
Kibble-Zurek mechanism makes universal predictions for quantities such as the
number and energy of excitations produced. This mechanism is now being used to
obtain critical exponents on emerging quantum computers and emulators, which in
some cases can be compared to Matrix Product State (MPS) numerical studies.
However, the mechanism is modified when the divergence of entanglement entropy
required for a faithful description of many quantum critical points is not
fully captured by the experiment or classical calculation. In this work, we
study how low-energy dynamics of quantum systems near criticality are modified
by finite entanglement, using conformally invariant critical points described
approximately by an MPS as an example. We derive that the effect of finite
entanglement on a Kibble-Zurek process is captured by a dimensionless scaling
function of the ratio of two length scales, one determined dynamically and one
by the entanglement restriction. Numerically we confirm first that dynamics at
finite bond dimension $\chi$ is independent of the algorithm chosen, then
obtain scaling collapses for sweeps in the transverse field Ising model and the
3-state Potts model. Our result establishes the precise role played by
entanglement in time-dependent critical phenomena and has direct implications
for quantum state preparation and classical simulation of quantum states.
Related papers
- Entanglement with neutral atoms in the simulation of nonequilibrium dynamics of one-dimensional spin models [0.0]
We study the generation and role of entanglement in the dynamics of spin-1/2 models.
We introduce the neutral atom Molmer-Sorensen gate, involving rapid adiabatic Rydberg dressing interleaved in a spin-echo sequence.
In quantum simulation, we consider critical behavior in quench dynamics of transverse field Ising models.
arXiv Detail & Related papers (2024-06-07T23:29:16Z) - Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Probing Confinement Through Dynamical Quantum Phase Transitions: From
Quantum Spin Models to Lattice Gauge Theories [0.0]
We show that a change in the type of dynamical quantum phase transitions accompanies the confinement-deconfinement transition.
Our conclusions can be tested in modern quantum-simulation platforms, such as ion-trap setups and cold-atom experiments of gauge theories.
arXiv Detail & Related papers (2023-10-18T18:00:04Z) - Quantum kernels for classifying dynamical singularities in a multiqubit system [0.0]
We use quantum Kernels to classify dynamical singularities of the rate function for a multiqubit system.
Our results show that this quantum dynamical critical problem can be efficiently solved using physically inspiring quantum Kernels.
arXiv Detail & Related papers (2023-10-06T15:01:37Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Variational quantum simulation of the quantum critical regime [0.0]
We propose a variational approach, which minimizes the variational free energy, to simulate and locate the quantum critical regime on a quantum computer.
Our work suggests a practical way as well as a first step for investigating quantum critical systems at finite temperatures on quantum devices with few qubits.
arXiv Detail & Related papers (2023-02-15T02:59:41Z) - Multipartite Entanglement in Crossing the Quantum Critical Point [6.24959391399729]
We investigate the multipartite entanglement for a slow quantum quench crossing a critical point.
We consider the quantum Ising model and the Lipkin-Meshkov-Glick model, which are local and full-connected quantum systems, respectively.
arXiv Detail & Related papers (2022-02-16T06:58:10Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.