論文の概要: Active Visual Localization in Partially Calibrated Environments
- arxiv url: http://arxiv.org/abs/2012.04263v1
- Date: Tue, 8 Dec 2020 08:00:55 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-16 21:17:24.552723
- Title: Active Visual Localization in Partially Calibrated Environments
- Title(参考訳): 部分校正環境における能動視定位
- Authors: Yingda Yin, Qingnan Fan, Fei Xia, Qihang Fang, Siyan Dong, Leonidas
Guibas, Baoquan Chen
- Abstract要約: 人間は、目立った視覚的な手がかりやランドマークに追われて地図を使わずに、自分自身をしっかりとローカライズすることができる。
この研究では、自律エージェントを同じ能力でエンドウイングすることを目指している。
このような能力はロボットアプリケーションにおいて重要であるが、エージェントが部分的に調整された環境に晒される場合、非常に困難である。
合成データと実データの両方で構成された屋内シーンデータセットACR-6を提案し、アクティブビジュアルローカリゼーションのための困難なシナリオをシミュレートします。
- 参考スコア(独自算出の注目度): 35.48595012305253
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Humans can robustly localize themselves without a map after they get lost
following prominent visual cues or landmarks. In this work, we aim at endowing
autonomous agents the same ability. Such ability is important in robotics
applications yet very challenging when an agent is exposed to partially
calibrated environments, where camera images with accurate 6 Degree-of-Freedom
pose labels only cover part of the scene. To address the above challenge, we
explore using Reinforcement Learning to search for a policy to generate
intelligent motions so as to actively localize the agent given visual
information in partially calibrated environments. Our core contribution is to
formulate the active visual localization problem as a Partially Observable
Markov Decision Process and propose an algorithmic framework based on Deep
Reinforcement Learning to solve it. We further propose an indoor scene dataset
ACR-6, which consists of both synthetic and real data and simulates challenging
scenarios for active visual localization. We benchmark our algorithm against
handcrafted baselines for localization and demonstrate that our approach
significantly outperforms them on localization success rate.
- Abstract(参考訳): 人間は、目立った視覚的な手がかりやランドマークに従えば、地図なしでしっかりと位置決めできる。
この研究では、自律エージェントを同じ能力でエンドウイングすることを目指している。
ロボット工学の分野では、エージェントが部分的に校正された環境に触れると、正確な6自由度カメラ画像がシーンの一部だけを撮影する場合には、そのような能力は非常に難しい。
上記の課題に対処するため、強化学習を用いて知的動作を生成するためのポリシーを探索し、エージェントに与えられた視覚情報を部分的に校正された環境で積極的にローカライズする。
我々の中心となる貢献は、部分観測可能なマルコフ決定プロセスとして、アクティブな視覚的局所化問題を定式化し、それを解くためのDeep Reinforcement Learningに基づくアルゴリズムフレームワークを提案することである。
さらに、合成データと実データの両方からなる屋内シーンデータセットACR-6を提案し、アクティブな視覚的ローカライゼーションのための挑戦的なシナリオをシミュレートする。
ローカライズのための手作りベースラインに対するアルゴリズムのベンチマークを行い,ローカライズ成功率に比較して評価した。
関連論文リスト
- Leveraging Spatial Attention and Edge Context for Optimized Feature Selection in Visual Localization [0.0]
画像の情報領域を選択的にターゲットするアテンションネットワークを導入する。
このネットワークを用いて、特徴選択プロセスを改善し、エッジ検出と組み合わせることで、最高の特徴を識別する。
提案手法を屋外ベンチマークデータセットで検証し,従来の手法と比較して優れた結果を示した。
論文 参考訳(メタデータ) (2024-10-16T05:00:51Z) - Swarm Intelligence in Geo-Localization: A Multi-Agent Large Vision-Language Model Collaborative Framework [51.26566634946208]
smileGeoは、新しい視覚的ジオローカライゼーションフレームワークである。
エージェント間のコミュニケーションによって、SmithGeoはこれらのエージェントの固有の知識と、検索された情報を統合する。
その結果,本手法は現在の最先端手法よりも優れていた。
論文 参考訳(メタデータ) (2024-08-21T03:31:30Z) - Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
本稿では, 位置決めの精度を高めるために, 視点選択の重要性を強調し, アクティブな位置決め領域について検討する。
私たちのコントリビューションは、リアルタイム操作用に設計されたシンプルなアーキテクチャ、自己教師付きデータトレーニング方法、および実世界のロボティクスアプリケーションに適した計画フレームワークにマップを一貫して統合する能力による、データ駆動型アプローチの使用に関するものです。
論文 参考訳(メタデータ) (2024-07-22T12:32:09Z) - Point-Level Region Contrast for Object Detection Pre-Training [147.47349344401806]
本稿では,物体検出作業のための自己教師付き事前学習手法である点レベル領域コントラストを提案する。
提案手法は,異なる領域から個々の点対を直接抽出することにより,コントラスト学習を行う。
領域ごとの集約表現と比較すると,入力領域の品質の変化に対して,我々のアプローチはより堅牢である。
論文 参考訳(メタデータ) (2022-02-09T18:56:41Z) - CrowdDriven: A New Challenging Dataset for Outdoor Visual Localization [44.97567243883994]
クラウドソースデータを用いた屋外シーンにおける視覚的位置推定のための新しいベンチマークを提案する。
私たちのデータセットは非常に困難で、評価されたすべてのメソッドが最も難しい部分で失敗していることが示されています。
データセットリリースの一部として、私たちはそれを生成するために使用されるツールを提供し、効率的で効果的な2D対応アノテーションを可能にします。
論文 参考訳(メタデータ) (2021-09-09T19:25:48Z) - Self-supervised Segmentation via Background Inpainting [96.10971980098196]
移動可能なカメラで撮影された単一の画像で、自己教師付き検出とセグメンテーションのアプローチを導入する。
我々は、提案に基づくセグメンテーションネットワークのトレーニングに利用する自己教師付き損失関数を利用する。
本手法は,標準ベンチマークから視覚的に切り離された画像の人間の検出とセグメント化に応用し,既存の自己監督手法より優れていることを示す。
論文 参考訳(メタデータ) (2020-11-11T08:34:40Z) - Unsupervised Metric Relocalization Using Transform Consistency Loss [66.19479868638925]
メートル法再ローカライズを行うためのトレーニングネットワークは、従来、正確な画像対応が必要である。
地図内のクエリ画像のローカライズは、登録に使用される参照画像に関係なく、同じ絶対的なポーズを与えるべきである。
提案手法は, 限られた地下構造情報が得られる場合に, 他の教師あり手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-11-01T19:24:27Z) - DASGIL: Domain Adaptation for Semantic and Geometric-aware Image-based
Localization [27.294822556484345]
環境変化下での視覚的長期化は、自律走行と移動ロボット工学において難しい問題である。
視覚的位置認識のための多スケール潜在埋め込み表現に幾何学的および意味的情報を融合する新しいマルチタスクアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-10-01T17:44:25Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
本稿では, 屋内環境におけるオブジェクトのアクティブビジュアルサーチ(AVS)の最適ポリシーを, オンライン設定で学習する問題に焦点をあてる。
提案手法はエージェントの現在のポーズとRGB-Dフレームを入力として使用する。
提案手法を利用可能なAVDベンチマークで検証し,平均成功率0.76,平均パス長17.1とした。
論文 参考訳(メタデータ) (2020-09-17T08:23:50Z) - Domain-invariant Similarity Activation Map Contrastive Learning for
Retrieval-based Long-term Visual Localization [30.203072945001136]
本研究では,多領域画像変換による領域不変特徴抽出のために,確率論的に一般アーキテクチャを定式化する。
そして、より精密な局所化のために、新しい勾配重み付き類似性活性化写像損失(Grad-SAM)を組み込んだ。
CMUSeasonsデータセットにおける提案手法の有効性を検証するために大規模な実験が行われた。
我々の性能は、最先端のイメージベースのローカライゼーションベースラインを中あるいは高精度で上回るか、あるいは上回る。
論文 参考訳(メタデータ) (2020-09-16T14:43:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。