Long Term Motion Prediction Using Keyposes
- URL: http://arxiv.org/abs/2012.04731v1
- Date: Tue, 8 Dec 2020 20:45:51 GMT
- Title: Long Term Motion Prediction Using Keyposes
- Authors: Sena Kiciroglu, Wei Wang, Mathieu Salzmann, Pascal Fua
- Abstract summary: We argue that, to achieve long term forecasting, predicting human pose at every time instant is unnecessary.
We call such poses "keyposes", and approximate complex motions by linearly interpolating between subsequent keyposes.
We show that learning the sequence of such keyposes allows us to predict very long term motion, up to 5 seconds in the future.
- Score: 122.22758311506588
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long term human motion prediction is an essential component in
safety-critical applications, such as human-robot interaction and autonomous
driving. We argue that, to achieve long term forecasting, predicting human pose
at every time instant is unnecessary because human motion follows patterns that
are well-represented by a few essential poses in the sequence. We call such
poses "keyposes", and approximate complex motions by linearly interpolating
between subsequent keyposes. We show that learning the sequence of such
keyposes allows us to predict very long term motion, up to 5 seconds in the
future. In particular, our predictions are much more realistic and better
preserve the motion dynamics than those obtained by the state-of-the-art
methods. Furthermore, our approach models the future keyposes
probabilistically, which, during inference, lets us generate diverse future
motions via sampling.
Related papers
- SPOTR: Spatio-temporal Pose Transformers for Human Motion Prediction [12.248428883804763]
3D human motion prediction is a research area computation of high significance and a challenge in computer vision.
Traditionally, autogregressive models have been used to predict human motion.
We present a non-autoregressive model for human motion prediction.
arXiv Detail & Related papers (2023-03-11T01:44:29Z) - Investigating Pose Representations and Motion Contexts Modeling for 3D
Motion Prediction [63.62263239934777]
We conduct an indepth study on various pose representations with a focus on their effects on the motion prediction task.
We propose a novel RNN architecture termed AHMR (Attentive Hierarchical Motion Recurrent network) for motion prediction.
Our approach outperforms the state-of-the-art methods in short-term prediction and achieves much enhanced long-term prediction proficiency.
arXiv Detail & Related papers (2021-12-30T10:45:22Z) - Dyadic Human Motion Prediction [119.3376964777803]
We introduce a motion prediction framework that explicitly reasons about the interactions of two observed subjects.
Specifically, we achieve this by introducing a pairwise attention mechanism that models the mutual dependencies in the motion history of the two subjects.
This allows us to preserve the long-term motion dynamics in a more realistic way and more robustly predict unusual and fast-paced movements.
arXiv Detail & Related papers (2021-12-01T10:30:40Z) - Generating Smooth Pose Sequences for Diverse Human Motion Prediction [90.45823619796674]
We introduce a unified deep generative network for both diverse and controllable motion prediction.
Our experiments on two standard benchmark datasets, Human3.6M and HumanEva-I, demonstrate that our approach outperforms the state-of-the-art baselines in terms of both sample diversity and accuracy.
arXiv Detail & Related papers (2021-08-19T00:58:00Z) - Probabilistic Human Motion Prediction via A Bayesian Neural Network [71.16277790708529]
We propose a probabilistic model for human motion prediction in this paper.
Our model could generate several future motions when given an observed motion sequence.
We extensively validate our approach on a large scale benchmark dataset Human3.6m.
arXiv Detail & Related papers (2021-07-14T09:05:33Z) - Perpetual Motion: Generating Unbounded Human Motion [61.40259979876424]
We focus on long-term prediction; that is, generating long sequences of human motion that is plausible.
We propose a model to generate non-deterministic, textitever-changing, perpetual human motion.
We train this using a heavy-tailed function of the KL divergence of a white-noise Gaussian process, allowing latent sequence temporal dependency.
arXiv Detail & Related papers (2020-07-27T21:50:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.