A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models
- URL: http://arxiv.org/abs/2012.04734v1
- Date: Tue, 8 Dec 2020 20:51:43 GMT
- Title: A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models
- Authors: Mohammed Hassanin, Nour Moustafa, Murat Tahtali
- Abstract summary: Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
- Score: 3.9962751777898955
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning algorithms have been recently targeted by attackers due to
their vulnerability. Several research studies have been conducted to address
this issue and build more robust deep learning models. Non-continuous deep
models are still not robust against adversarial, where most of the recent
studies have focused on developing attack techniques to evade the learning
process of the models. One of the main reasons behind the vulnerability of such
models is that a learning classifier is unable to slightly predict perturbed
samples. To address this issue, we propose a novel objective/loss function, the
so-called marginal contrastive, which enforces the features to lie under a
specified margin to facilitate their prediction using deep convolutional
networks (i.e., Char-CNN). Extensive experiments have been conducted on
continuous cases (e.g., UNSW NB15 dataset) and discrete ones (i.e,
eight-large-scale datasets [32]) to prove the effectiveness of the proposed
method. The results revealed that the regularization of the learning process
based on the proposed loss function can improve the performance of Char-CNN.
Related papers
- MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - A Robust Likelihood Model for Novelty Detection [8.766411351797883]
Current approaches to novelty or anomaly detection are based on deep neural networks.
We propose a new prior that aims at learning a robust likelihood for the novelty test, as a defense against attacks.
We also integrate the same prior with a state-of-the-art novelty detection approach.
arXiv Detail & Related papers (2023-06-06T01:02:31Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Adversarial Robustness Assessment of NeuroEvolution Approaches [1.237556184089774]
We evaluate the robustness of models found by two NeuroEvolution approaches on the CIFAR-10 image classification task.
Our results show that when the evolved models are attacked with iterative methods, their accuracy usually drops to, or close to, zero.
Some of these techniques can exacerbate the perturbations added to the original inputs, potentially harming robustness.
arXiv Detail & Related papers (2022-07-12T10:40:19Z) - Improving robustness of jet tagging algorithms with adversarial training [56.79800815519762]
We investigate the vulnerability of flavor tagging algorithms via application of adversarial attacks.
We present an adversarial training strategy that mitigates the impact of such simulated attacks.
arXiv Detail & Related papers (2022-03-25T19:57:19Z) - Learning to Learn Transferable Attack [77.67399621530052]
Transfer adversarial attack is a non-trivial black-box adversarial attack that aims to craft adversarial perturbations on the surrogate model and then apply such perturbations to the victim model.
We propose a Learning to Learn Transferable Attack (LLTA) method, which makes the adversarial perturbations more generalized via learning from both data and model augmentation.
Empirical results on the widely-used dataset demonstrate the effectiveness of our attack method with a 12.85% higher success rate of transfer attack compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-10T07:24:21Z) - Residual Error: a New Performance Measure for Adversarial Robustness [85.0371352689919]
A major challenge that limits the wide-spread adoption of deep learning has been their fragility to adversarial attacks.
This study presents the concept of residual error, a new performance measure for assessing the adversarial robustness of a deep neural network.
Experimental results using the case of image classification demonstrate the effectiveness and efficacy of the proposed residual error metric.
arXiv Detail & Related papers (2021-06-18T16:34:23Z) - Exploiting epistemic uncertainty of the deep learning models to generate
adversarial samples [0.7734726150561088]
"Adversarial Machine Learning" aims to devise new adversarial attacks and to defend against these attacks with more robust architectures.
This study explores the usage of quantified epistemic uncertainty obtained from Monte-Carlo Dropout Sampling for adversarial attack purposes.
Our results show that our proposed hybrid attack approach increases the attack success rates from 82.59% to 85.40%, 82.86% to 89.92% and 88.06% to 90.03% on datasets.
arXiv Detail & Related papers (2021-02-08T11:59:27Z) - Reparameterized Variational Divergence Minimization for Stable Imitation [57.06909373038396]
We study the extent to which variations in the choice of probabilistic divergence may yield more performant ILO algorithms.
We contribute a re parameterization trick for adversarial imitation learning to alleviate the challenges of the promising $f$-divergence minimization framework.
Empirically, we demonstrate that our design choices allow for ILO algorithms that outperform baseline approaches and more closely match expert performance in low-dimensional continuous-control tasks.
arXiv Detail & Related papers (2020-06-18T19:04:09Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.