Towards Adversarially Robust Deep Metric Learning
- URL: http://arxiv.org/abs/2501.01025v2
- Date: Sun, 12 Jan 2025 04:43:46 GMT
- Title: Towards Adversarially Robust Deep Metric Learning
- Authors: Xiaopeng Ke,
- Abstract summary: Deep neural networks are prone to adversarial attacks and could be easily fooled by adversarial examples.
Existing works fail to thoroughly inspect the robustness of DML models.
We propose a new defense, the Ensemble Adversarial Training (EAT), which exploits ensemble learning and adversarial training.
- Score: 0.8702432681310401
- License:
- Abstract: Deep Metric Learning (DML) has shown remarkable successes in many domains by taking advantage of powerful deep neural networks. Deep neural networks are prone to adversarial attacks and could be easily fooled by adversarial examples. The current progress on this robustness issue is mainly about deep classification models but pays little attention to DML models. Existing works fail to thoroughly inspect the robustness of DML and neglect an important DML scenario, the clustering-based inference. In this work, we first point out the robustness issue of DML models in clustering-based inference scenarios. We find that, for the clustering-based inference, existing defenses designed DML are unable to be reused and the adaptions of defenses designed for deep classification models cannot achieve satisfactory robustness performance. To alleviate the hazard of adversarial examples, we propose a new defense, the Ensemble Adversarial Training (EAT), which exploits ensemble learning and adversarial training. EAT promotes the diversity of the ensemble, encouraging each model in the ensemble to have different robustness features, and employs a self-transferring mechanism to make full use of the robustness statistics of the whole ensemble in the update of every single model. We evaluate the EAT method on three widely-used datasets with two popular model architectures. The results show that the proposed EAT method greatly outperforms the adaptions of defenses designed for deep classification models.
Related papers
- A Robust Adversarial Ensemble with Causal (Feature Interaction) Interpretations for Image Classification [9.945272787814941]
We present a deep ensemble model that combines discriminative features with generative models to achieve both high accuracy and adversarial robustness.
Our approach integrates a bottom-level pre-trained discriminative network for feature extraction with a top-level generative classification network that models adversarial input distributions.
arXiv Detail & Related papers (2024-12-28T05:06:20Z) - MOREL: Enhancing Adversarial Robustness through Multi-Objective Representation Learning [1.534667887016089]
deep neural networks (DNNs) are vulnerable to slight adversarial perturbations.
We show that strong feature representation learning during training can significantly enhance the original model's robustness.
We propose MOREL, a multi-objective feature representation learning approach, encouraging classification models to produce similar features for inputs within the same class, despite perturbations.
arXiv Detail & Related papers (2024-10-02T16:05:03Z) - Order of Magnitude Speedups for LLM Membership Inference [5.124111136127848]
Large Language Models (LLMs) have the promise to revolutionize computing broadly, but their complexity and extensive training data also expose privacy vulnerabilities.
One of the simplest privacy risks associated with LLMs is their susceptibility to membership inference attacks (MIAs)
We propose a low-cost MIA that leverages an ensemble of small quantile regression models to determine if a document belongs to the model's training set or not.
arXiv Detail & Related papers (2024-09-22T16:18:14Z) - Efficient Adversarial Training in LLMs with Continuous Attacks [99.5882845458567]
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails.
We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses.
C-AdvIPO is an adversarial variant of IPO that does not require utility data for adversarially robust alignment.
arXiv Detail & Related papers (2024-05-24T14:20:09Z) - Effective Backdoor Mitigation in Vision-Language Models Depends on the Pre-training Objective [71.39995120597999]
Modern machine learning models are vulnerable to adversarial and backdoor attacks.
Such risks are heightened by the prevalent practice of collecting massive, internet-sourced datasets for training multimodal models.
CleanCLIP is the current state-of-the-art approach to mitigate the effects of backdooring in multimodal models.
arXiv Detail & Related papers (2023-11-25T06:55:13Z) - Task-Distributionally Robust Data-Free Meta-Learning [99.56612787882334]
Data-Free Meta-Learning (DFML) aims to efficiently learn new tasks by leveraging multiple pre-trained models without requiring their original training data.
For the first time, we reveal two major challenges hindering their practical deployments: Task-Distribution Shift ( TDS) and Task-Distribution Corruption (TDC)
arXiv Detail & Related papers (2023-11-23T15:46:54Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - Latent Boundary-guided Adversarial Training [61.43040235982727]
Adrial training is proved to be the most effective strategy that injects adversarial examples into model training.
We propose a novel adversarial training framework called LAtent bounDary-guided aDvErsarial tRaining.
arXiv Detail & Related papers (2022-06-08T07:40:55Z) - A Deep Marginal-Contrastive Defense against Adversarial Attacks on 1D
Models [3.9962751777898955]
Deep learning algorithms have been recently targeted by attackers due to their vulnerability.
Non-continuous deep models are still not robust against adversarial attacks.
We propose a novel objective/loss function, which enforces the features to lie under a specified margin to facilitate their prediction.
arXiv Detail & Related papers (2020-12-08T20:51:43Z) - DVERGE: Diversifying Vulnerabilities for Enhanced Robust Generation of
Ensembles [20.46399318111058]
Adversarial attacks can mislead CNN models with small perturbations, which can effectively transfer between different models trained on the same dataset.
We propose DVERGE, which isolates the adversarial vulnerability in each sub-model by distilling non-robust features.
The novel diversity metric and training procedure enables DVERGE to achieve higher robustness against transfer attacks.
arXiv Detail & Related papers (2020-09-30T14:57:35Z) - Adversarial Distributional Training for Robust Deep Learning [53.300984501078126]
Adversarial training (AT) is among the most effective techniques to improve model robustness by augmenting training data with adversarial examples.
Most existing AT methods adopt a specific attack to craft adversarial examples, leading to the unreliable robustness against other unseen attacks.
In this paper, we introduce adversarial distributional training (ADT), a novel framework for learning robust models.
arXiv Detail & Related papers (2020-02-14T12:36:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.