Tracking Interaction States for Multi-Turn Text-to-SQL Semantic Parsing
- URL: http://arxiv.org/abs/2012.04995v1
- Date: Wed, 9 Dec 2020 11:59:58 GMT
- Title: Tracking Interaction States for Multi-Turn Text-to-SQL Semantic Parsing
- Authors: Run-Ze Wang, Zhen-Hua Ling, Jing-Bo Zhou, Yu Hu
- Abstract summary: The task of multi-turn text-to- semantic parsing aims to translate natural language utterances in an interaction intosql queries.
A graph relational network and a non-linear layer are designed to update the representations of these two states respectively.
Experimental results on the challenging Co dataset demonstrate the effectiveness of our proposed method.
- Score: 44.0348697408427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of multi-turn text-to-SQL semantic parsing aims to translate natural
language utterances in an interaction into SQL queries in order to answer them
using a database which normally contains multiple table schemas. Previous
studies on this task usually utilized contextual information to enrich
utterance representations and to further influence the decoding process. While
they ignored to describe and track the interaction states which are determined
by history SQL queries and are related with the intent of current utterance. In
this paper, two kinds of interaction states are defined based on schema items
and SQL keywords separately. A relational graph neural network and a non-linear
layer are designed to update the representations of these two states
respectively. The dynamic schema-state and SQL-state representations are then
utilized to decode the SQL query corresponding to current utterance.
Experimental results on the challenging CoSQL dataset demonstrate the
effectiveness of our proposed method, which achieves better performance than
other published methods on the task leaderboard.
Related papers
- Schema-Aware Multi-Task Learning for Complex Text-to-SQL [4.913409359995421]
We present a schema-aware multi-task learning framework (named MT) for complicatedsql queries.
Specifically, we design a schema linking discriminator module to distinguish the valid question-schema linkings.
On the decoder side, we define 6-type relationships to describe the connections between tables and columns.
arXiv Detail & Related papers (2024-03-09T01:13:37Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - SQLformer: Deep Auto-Regressive Query Graph Generation for Text-to-SQL Translation [16.07396492960869]
We introduce a novel Transformer architecture specifically crafted to perform text-to-gressive translation tasks.
Our model predicts queries as abstract syntax trees (ASTs) in an autore way, incorporating structural inductive bias in the executable and decoder layers.
arXiv Detail & Related papers (2023-10-27T00:13:59Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - STAR: SQL Guided Pre-Training for Context-dependent Text-to-SQL Parsing [64.80483736666123]
We propose a novel pre-training framework STAR for context-dependent text-to- parsing.
In addition, we construct a large-scale context-dependent text-to-the-art conversation corpus to pre-train STAR.
Extensive experiments show that STAR achieves new state-of-the-art performance on two downstream benchmarks.
arXiv Detail & Related papers (2022-10-21T11:30:07Z) - A Survey on Text-to-SQL Parsing: Concepts, Methods, and Future
Directions [102.8606542189429]
The goal of text-to-corpora parsing is to convert a natural language (NL) question to its corresponding structured query language () based on the evidences provided by databases.
Deep neural networks have significantly advanced this task by neural generation models, which automatically learn a mapping function from an input NL question to an output query.
arXiv Detail & Related papers (2022-08-29T14:24:13Z) - HIE-SQL: History Information Enhanced Network for Context-Dependent
Text-to-SQL Semantic Parsing [1.343950231082215]
We propose a History Information Enhanced text-to-the-art model (HIE-) to exploit context-dependence information from both history utterances and the last predictedsql query.
We show our methods improve the performance of HIE- by a significant margin, which achieves new state-of-the-art results on the two context-dependent text-to-the-art benchmarks.
arXiv Detail & Related papers (2022-03-14T11:58:37Z) - S$^2$SQL: Injecting Syntax to Question-Schema Interaction Graph Encoder
for Text-to-SQL Parsers [66.78665327694625]
We propose S$2$, injecting Syntax to question- encoder graph for Text-to- relational parsing.
We also employ the decoupling constraint to induce diverse edge embedding, which further improves the network's performance.
Experiments on the Spider and robustness setting Spider-Syn demonstrate that the proposed approach outperforms all existing methods when pre-training models are used.
arXiv Detail & Related papers (2022-03-14T09:49:15Z) - Pay More Attention to History: A Context Modeling Strategy for
Conversational Text-to-SQL [8.038535788630542]
One of the most intractable problem of conversational text-to- domain is modeling the semantics of multi-turn queries.
This paper shows that explicit modeling the semantic changes by adding each turn and the summarization of the whole context can bring better performance.
arXiv Detail & Related papers (2021-12-16T09:41:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.