Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction
- URL: http://arxiv.org/abs/2012.05207v1
- Date: Wed, 9 Dec 2020 18:02:26 GMT
- Title: Uncertainty Intervals for Graph-based Spatio-Temporal Traffic Prediction
- Authors: Tijs Maas, Peter Bloem
- Abstract summary: We propose a Spatio-Temporal neural network that is trained to estimate a density given the measurements of previous timesteps, conditioned on a quantile.
Our method of density estimation is fully parameterised by our neural network and does not use a likelihood approximation internally.
This approach produces uncertainty estimates without the need to sample during inference, such as in Monte Carlo Dropout.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Many traffic prediction applications rely on uncertainty estimates instead of
the mean prediction. Statistical traffic prediction literature has a complete
subfield devoted to uncertainty modelling, but recent deep learning traffic
prediction models either lack this feature or make specific assumptions that
restrict its practicality. We propose Quantile Graph Wavenet, a Spatio-Temporal
neural network that is trained to estimate a density given the measurements of
previous timesteps, conditioned on a quantile. Our method of density estimation
is fully parameterised by our neural network and does not use a likelihood
approximation internally. The quantile loss function is asymmetric and this
makes it possible to model skewed densities. This approach produces uncertainty
estimates without the need to sample during inference, such as in Monte Carlo
Dropout, which makes our method also efficient.
Related papers
- Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
We propose a post-hoc sampling strategy for estimating predictive uncertainty accounting for data ambiguity.
The method can generate different plausible outputs for a given input and does not assume parametric forms of predictive distributions.
arXiv Detail & Related papers (2023-08-03T12:43:21Z) - The Implicit Delta Method [61.36121543728134]
In this paper, we propose an alternative, the implicit delta method, which works by infinitesimally regularizing the training loss of uncertainty.
We show that the change in the evaluation due to regularization is consistent for the variance of the evaluation estimator, even when the infinitesimal change is approximated by a finite difference.
arXiv Detail & Related papers (2022-11-11T19:34:17Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
Under dynamic traffic scenarios, planning based on deterministic predictions is not trustworthy.
The authors propose to quantify uncertainty during forecasting using approximation which deterministic approaches fail to capture.
The effect of dropout weights and long-term prediction on future state uncertainty has been studied.
arXiv Detail & Related papers (2022-05-04T04:23:38Z) - Data Uncertainty without Prediction Models [0.8223798883838329]
We propose an uncertainty estimation method named a Distance-weighted Class Impurity without explicit use of prediction models.
We verified that the Distance-weighted Class Impurity works effectively regardless of prediction models.
arXiv Detail & Related papers (2022-04-25T13:26:06Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
We show the principled way to measure the uncertainty of predictions for a classifier based on Nadaraya-Watson's nonparametric estimate of the conditional label distribution.
We demonstrate the strong performance of the method in uncertainty estimation tasks on a variety of real-world image datasets.
arXiv Detail & Related papers (2022-02-07T12:30:45Z) - Dense Uncertainty Estimation [62.23555922631451]
In this paper, we investigate neural networks and uncertainty estimation techniques to achieve both accurate deterministic prediction and reliable uncertainty estimation.
We work on two types of uncertainty estimations solutions, namely ensemble based methods and generative model based methods, and explain their pros and cons while using them in fully/semi/weakly-supervised framework.
arXiv Detail & Related papers (2021-10-13T01:23:48Z) - Learnable Uncertainty under Laplace Approximations [65.24701908364383]
We develop a formalism to explicitly "train" the uncertainty in a decoupled way to the prediction itself.
We show that such units can be trained via an uncertainty-aware objective, improving standard Laplace approximations' performance.
arXiv Detail & Related papers (2020-10-06T13:43:33Z) - Probabilistic Neighbourhood Component Analysis: Sample Efficient
Uncertainty Estimation in Deep Learning [25.8227937350516]
We show that uncertainty estimation capability of state-of-the-art BNNs and Deep Ensemble models degrades significantly when the amount of training data is small.
We propose a probabilistic generalization of the popular sample-efficient non-parametric kNN approach.
Our approach enables deep kNN to accurately quantify underlying uncertainties in its prediction.
arXiv Detail & Related papers (2020-07-18T21:36:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.