Topological Protection of Coherence in Noisy Open Quantum Systems
- URL: http://arxiv.org/abs/2012.05274v1
- Date: Wed, 9 Dec 2020 19:22:45 GMT
- Title: Topological Protection of Coherence in Noisy Open Quantum Systems
- Authors: Yu Yao, Henning Schl\"omer, Zhengzhi Ma, Lorenzo Campos Venuti,
Stephan Haas
- Abstract summary: We consider protection mechanisms in dissipative quantum systems in the presence of quenched disorder.
The evolution of a fiducial qubit is entirely determined by a non-Hermitian Hamiltonian.
It is shown how even in the presence of disorder winding numbers can be defined and evaluated in real space.
- Score: 6.48225995014171
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider topological protection mechanisms in dissipative quantum systems
in the presence of quenched disorder, with the intent to prolong coherence
times of qubits. The physical setting is a network of qubits and dissipative
cavities whose coupling parameters are tunable, such that topological edge
states can be stabilized. The evolution of a fiducial qubit is entirely
determined by a non-Hermitian Hamiltonian which thus emerges from a bona-fide
physical process. It is shown how even in the presence of disorder winding
numbers can be defined and evaluated in real space, as long as certain
symmetries are preserved. Hence we can construct the topological phase diagrams
of noisy open quantum models, such as the non-Hermitian disordered
Su-Schrieffer- Heeger dimer model and a trimer model that includes longer-range
couplings. In the presence of competing disorder parameters, interesting
re-entrance phenomena of topologically non-trivial sectors are observed. This
means that in certain parameter regions, increasing disorder drastically
increases the coherence time of the fiducial qubit.
Related papers
- Edge modes and symmetry-protected topological states in open quantum
systems [0.0]
Topological order offers possibilities for processing quantum information which can be immune to imperfections.
We show robustness of certain aspects of $ZZtimes Z$ symmetry-protected trajectory (SPT) order against a wide class of dissipation channels.
Our work thus proposes a novel framework to study the dynamics of dissipative SPT phases.
arXiv Detail & Related papers (2023-10-13T21:09:52Z) - Non-Hermitian topological quantum states in a reservoir-engineered
transmon chain [0.0]
We show that a non-Hermitian quantum phase can be realized in a reservoir-engineered transmon chain.
We show that genuine quantum effects are observable in this system via robust and slowly decaying long-range quantum entanglement of the topological end modes.
arXiv Detail & Related papers (2022-10-06T15:21:21Z) - Role of boundary conditions in the full counting statistics of
topological defects after crossing a continuous phase transition [62.997667081978825]
We analyze the role of boundary conditions in the statistics of topological defects.
We show that for fast and moderate quenches, the cumulants of the kink number distribution present a universal scaling with the quench rate.
arXiv Detail & Related papers (2022-07-08T09:55:05Z) - Bridging the gap between topological non-Hermitian physics and open
quantum systems [62.997667081978825]
We show how to detect a transition between different topological phases by measuring the response to local perturbations.
Our formalism is exemplified in a 1D Hatano-Nelson model, highlighting the difference between the bosonic and fermionic cases.
arXiv Detail & Related papers (2021-09-22T18:00:17Z) - Quantum scars and bulk coherence in a symmetry-protected topological
phase [0.0]
We show the existence of many-body scars and their implications on bulk coherence in certain protected topological (SPT) phases.
We show that eigenstates with volume-law entanglement coexist with area-law entangled eigenstates throughout the spectrum.
Our work sheds light on the role of quantum many-body scars in preserving SPT order at finite temperature and the possibility of coherent bulk dynamics in models with SPT order beyond the existence of long-lived edge modes.
arXiv Detail & Related papers (2021-03-29T18:35:35Z) - Realising the Symmetry-Protected Haldane Phase in Fermi-Hubbard Ladders [0.0]
Topology in quantum many-body systems has profoundly changed our understanding of quantum phases of matter.
Here, we realise such a topological Haldane phase with Fermi-Hubbard ladders in an ultracold-atom quantum simulator.
arXiv Detail & Related papers (2021-03-18T17:55:56Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Stability of Time-Reversal Symmetry Protected Topological Phases [4.181129887389203]
We show that the spectral functions for Kramers degenerate states can be split by dissipation, and the backscattering between counter-propagating edge states can be induced by dissipation.
Our study could also be extended to interacting topological phases protected by the time-reversal symmetry.
arXiv Detail & Related papers (2020-09-28T03:29:12Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z) - Multidimensional dark space and its underlying symmetries: towards
dissipation-protected qubits [62.997667081978825]
We show that a controlled interaction with the environment may help to create a state, dubbed as em dark'', which is immune to decoherence.
To encode quantum information in the dark states, they need to span a space with a dimensionality larger than one, so different states act as a computational basis.
This approach offers new possibilities for storing, protecting and manipulating quantum information in open systems.
arXiv Detail & Related papers (2020-02-01T15:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.