Non-equilibrium stationary states of quantum non-Hermitian lattice
models
- URL: http://arxiv.org/abs/2103.01941v2
- Date: Wed, 2 Feb 2022 18:50:51 GMT
- Title: Non-equilibrium stationary states of quantum non-Hermitian lattice
models
- Authors: Alexander McDonald, Ryo Hanai, Aashish A. Clerk
- Abstract summary: We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
- Score: 68.8204255655161
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show how generic non-Hermitian tight-binding lattice models can be
realized in an unconditional, quantum-mechanically consistent manner by
constructing an appropriate open quantum system. We focus on the quantum steady
states of such models for both fermionic and bosonic systems. Surprisingly, key
features and spatial structures in the steady state cannot be simply understood
from the non-Hermitian Hamiltonian alone. Using the 1D Hatano-Nelson model as a
paradigmatic example, we show that the steady state has a marked sensitivity to
boundary conditions. This dependence however is qualitatively and
quantitatively distinct from the non-Hermitian skin effect, and has no simple
connection to non-Hermitian topology. Further, particle statistics play an
unexpected role: the steady-state density profile is dramatically different for
fermions versus bosons. Our work highlights the key role of fluctuations in
quantum realizations of non-Hermitian dynamics, and provides a starting point
for future work on engineered steady states of open quantum systems.
Related papers
- Entanglement Hamiltonian and effective temperature of non-Hermitian quantum spin ladders [0.0]
We analytically investigate the entanglement Hamiltonian and entanglement energy spectrum of a non-Hermitian spin ladder.
Our findings provide new insights into quantum entanglement in non-Hermitian systems.
arXiv Detail & Related papers (2024-09-25T16:20:24Z) - Stable infinite-temperature eigenstates in SU(2)-symmetric nonintegrable models [0.0]
A class of nonintegrable bond-staggered models is endowed with a large number of zero-energy eigenstates and possesses a non-Abelian internal symmetry.
We show that few-magnon zero-energy states have an exact analytical description, allowing us to build a basis of low-entangled fixed-separation states.
arXiv Detail & Related papers (2024-07-16T17:48:47Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Signatures of Quantum Phase Transitions in Driven Dissipative Spin Chains [0.0]
We show that a driven-dissipative quantum spin chain exhibits a peculiar sensitivity to the ground-state quantum phase transition.
We develop a versatile analytical approach that becomes exact with vanishing dissipation.
arXiv Detail & Related papers (2024-05-30T22:25:15Z) - Variational quantum simulation using non-Gaussian continuous-variable
systems [39.58317527488534]
We present a continuous-variable variational quantum eigensolver compatible with state-of-the-art photonic technology.
The framework we introduce allows us to compare discrete and continuous variable systems without introducing a truncation of the Hilbert space.
arXiv Detail & Related papers (2023-10-24T15:20:07Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Quantum Instability [30.674987397533997]
We show how a time-independent, finite-dimensional quantum system can give rise to a linear instability corresponding to that in the classical system.
An unstable quantum system has a richer spectrum and a much longer recurrence time than a stable quantum system.
arXiv Detail & Related papers (2022-08-05T19:53:46Z) - Quasi-Locality Bounds for Quantum Lattice Systems. Part II.
Perturbations of Frustration-Free Spin Models with Gapped Ground States [0.0]
We study the stability with respect to a broad class of perturbations of gapped ground state phases of quantum spin systems.
Under a condition of Local Topological Quantum Order, the bulk gap is stable under perturbations that decay at long distances faster than a stretched exponential.
arXiv Detail & Related papers (2020-10-29T03:24:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.