Kronecker Product Feature Fusion for Convolutional Neural Network in
Remote Sensing Scene Classification
- URL: http://arxiv.org/abs/2402.00036v1
- Date: Mon, 8 Jan 2024 19:01:01 GMT
- Title: Kronecker Product Feature Fusion for Convolutional Neural Network in
Remote Sensing Scene Classification
- Authors: Yinzhu Cheng
- Abstract summary: CNN can extract hierarchical convolutional features from remote sensing imagery.
Two successful Feature Fusion methods, Add and Concat, are employed in certain state-of-the-art CNN algorithms.
We propose a novel Feature Fusion algorithm, which unifies the aforementioned methods using the Kronecker Product (KPFF)
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Remote Sensing Scene Classification is a challenging and valuable research
topic, in which Convolutional Neural Network (CNN) has played a crucial role.
CNN can extract hierarchical convolutional features from remote sensing
imagery, and Feature Fusion of different layers can enhance CNN's performance.
Two successful Feature Fusion methods, Add and Concat, are employed in certain
state-of-the-art CNN algorithms. In this paper, we propose a novel Feature
Fusion algorithm, which unifies the aforementioned methods using the Kronecker
Product (KPFF), and we discuss the Backpropagation procedure associated with
this algorithm. To validate the efficacy of the proposed method, a series of
experiments are designed and conducted. The results demonstrate its
effectiveness of enhancing CNN's accuracy in Remote sensing scene
classification.
Related papers
- Training Convolutional Neural Networks with the Forward-Forward
algorithm [1.74440662023704]
Forward Forward (FF) algorithm has up to now only been used in fully connected networks.
We show how the FF paradigm can be extended to CNNs.
Our FF-trained CNN, featuring a novel spatially-extended labeling technique, achieves a classification accuracy of 99.16% on the MNIST hand-written digits dataset.
arXiv Detail & Related papers (2023-12-22T18:56:35Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
This paper introduces the novel concept of Spiking-UNet for image processing, which combines the power of Spiking Neural Networks (SNNs) with the U-Net architecture.
To achieve an efficient Spiking-UNet, we face two primary challenges: ensuring high-fidelity information propagation through the network via spikes and formulating an effective training strategy.
Experimental results show that, on image segmentation and denoising, our Spiking-UNet achieves comparable performance to its non-spiking counterpart.
arXiv Detail & Related papers (2023-07-20T16:00:19Z) - Continuous approximation by convolutional neural networks with a
sigmoidal function [0.0]
We present a class of convolutional neural networks (CNNs) called non-overlapping CNNs.
We prove that such networks with sigmoidal activation function are capable of approximating arbitrary continuous function defined on compact input sets with any desired degree of accuracy.
arXiv Detail & Related papers (2022-09-27T12:31:36Z) - Weakly-supervised fire segmentation by visualizing intermediate CNN
layers [82.75113406937194]
Fire localization in images and videos is an important step for an autonomous system to combat fire incidents.
We consider weakly supervised segmentation of fire in images, in which only image labels are used to train the network.
We show that in the case of fire segmentation, which is a binary segmentation problem, the mean value of features in a mid-layer of classification CNN can perform better than conventional Class Activation Mapping (CAM) method.
arXiv Detail & Related papers (2021-11-16T11:56:28Z) - The Mind's Eye: Visualizing Class-Agnostic Features of CNNs [92.39082696657874]
We propose an approach to visually interpret CNN features given a set of images by creating corresponding images that depict the most informative features of a specific layer.
Our method uses a dual-objective activation and distance loss, without requiring a generator network nor modifications to the original model.
arXiv Detail & Related papers (2021-01-29T07:46:39Z) - Convolutional Neural Networks for Multispectral Image Cloud Masking [7.812073412066698]
Convolutional neural networks (CNN) have proven to be state of the art methods for many image classification tasks.
We study the use of different CNN architectures for cloud masking of Proba-V multispectral images.
arXiv Detail & Related papers (2020-12-09T21:33:20Z) - Video-based Facial Expression Recognition using Graph Convolutional
Networks [57.980827038988735]
We introduce a Graph Convolutional Network (GCN) layer into a common CNN-RNN based model for video-based facial expression recognition.
We evaluate our method on three widely-used datasets, CK+, Oulu-CASIA and MMI, and also one challenging wild dataset AFEW8.0.
arXiv Detail & Related papers (2020-10-26T07:31:51Z) - When CNNs Meet Random RNNs: Towards Multi-Level Analysis for RGB-D
Object and Scene Recognition [10.796613905980609]
We propose a novel framework that extracts discriminative feature representations from multi-modal RGB-D images for object and scene recognition tasks.
To cope with the high dimensionality of CNN activations, a random weighted pooling scheme has been proposed.
Experiments verify that fully randomized structure in RNN stage encodes CNN activations to discriminative solid features successfully.
arXiv Detail & Related papers (2020-04-26T10:58:27Z) - Cascaded Deep Video Deblurring Using Temporal Sharpness Prior [88.98348546566675]
The proposed algorithm mainly consists of optical flow estimation from intermediate latent frames and latent frame restoration steps.
It first develops a deep CNN model to estimate optical flow from intermediate latent frames and then restores the latent frames based on the estimated optical flow.
We show that exploring the domain knowledge of video deblurring is able to make the deep CNN model more compact and efficient.
arXiv Detail & Related papers (2020-04-06T09:13:49Z) - Curriculum By Smoothing [52.08553521577014]
Convolutional Neural Networks (CNNs) have shown impressive performance in computer vision tasks such as image classification, detection, and segmentation.
We propose an elegant curriculum based scheme that smoothes the feature embedding of a CNN using anti-aliasing or low-pass filters.
As the amount of information in the feature maps increases during training, the network is able to progressively learn better representations of the data.
arXiv Detail & Related papers (2020-03-03T07:27:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.