Privacy Amplification by Decentralization
- URL: http://arxiv.org/abs/2012.05326v2
- Date: Fri, 12 Feb 2021 14:33:33 GMT
- Title: Privacy Amplification by Decentralization
- Authors: Edwige Cyffers, Aur\'elien Bellet
- Abstract summary: We introduce a novel relaxation of local differential privacy (LDP) that naturally arises in fully decentralized protocols.
We study a decentralized model of computation where a token performs a walk on the network graph and is updated sequentially by the party who receives it.
We prove that the privacy-utility trade-offs of our algorithms significantly improve upon LDP, and in some cases even match what can be achieved with methods based on trusted/secure aggregation and shuffling.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Analyzing data owned by several parties while achieving a good trade-off
between utility and privacy is a key challenge in federated learning and
analytics. In this work, we introduce a novel relaxation of local differential
privacy (LDP) that naturally arises in fully decentralized protocols, i.e.,
when participants exchange information by communicating along the edges of a
network graph. This relaxation, that we call network DP, captures the fact that
users have only a local view of the decentralized system. To show the relevance
of network DP, we study a decentralized model of computation where a token
performs a walk on the network graph and is updated sequentially by the party
who receives it. For tasks such as real summation, histogram computation and
optimization with gradient descent, we propose simple algorithms on ring and
complete topologies. We prove that the privacy-utility trade-offs of our
algorithms significantly improve upon LDP, and in some cases even match what
can be achieved with methods based on trusted/secure aggregation and shuffling.
Our experiments illustrate the superior utility of our approach when training a
machine learning model with stochastic gradient descent.
Related papers
- Decentralized Learning Strategies for Estimation Error Minimization with Graph Neural Networks [94.2860766709971]
We address the challenge of sampling and remote estimation for autoregressive Markovian processes in a wireless network with statistically-identical agents.
Our goal is to minimize time-average estimation error and/or age of information with decentralized scalable sampling and transmission policies.
arXiv Detail & Related papers (2024-04-04T06:24:11Z) - Communication-Efficient Decentralized Federated Learning via One-Bit
Compressive Sensing [52.402550431781805]
Decentralized federated learning (DFL) has gained popularity due to its practicality across various applications.
Compared to the centralized version, training a shared model among a large number of nodes in DFL is more challenging.
We develop a novel algorithm based on the framework of the inexact alternating direction method (iADM)
arXiv Detail & Related papers (2023-08-31T12:22:40Z) - Online Distributed Learning with Quantized Finite-Time Coordination [0.4910937238451484]
In our setting a set of agents need to cooperatively train a learning model from streaming data.
We propose a distributed algorithm that relies on a quantized, finite-time coordination protocol.
We analyze the performance of the proposed algorithm in terms of the mean distance from the online solution.
arXiv Detail & Related papers (2023-07-13T08:36:15Z) - Distributed Learning over Networks with Graph-Attention-Based
Personalization [49.90052709285814]
We propose a graph-based personalized algorithm (GATTA) for distributed deep learning.
In particular, the personalized model in each agent is composed of a global part and a node-specific part.
By treating each agent as one node in a graph the node-specific parameters as its features, the benefits of the graph attention mechanism can be inherited.
arXiv Detail & Related papers (2023-05-22T13:48:30Z) - sqSGD: Locally Private and Communication Efficient Federated Learning [14.60645909629309]
Federated learning (FL) is a technique that trains machine learning models from decentralized data sources.
We develop a gradient-based learning algorithm called sqSGD that addresses communication efficiency and high-dimensional compatibility.
Experiment results show sqSGD successfully learns large models like LeNet and ResNet with local privacy constraints.
arXiv Detail & Related papers (2022-06-21T17:45:35Z) - Muffliato: Peer-to-Peer Privacy Amplification for Decentralized Optimization and Averaging [20.39986955578245]
We introduce pairwise network differential privacy, a relaxation of Local Differential Privacy (LDP)
We derive a differentially private decentralized optimization algorithm that alternates between local gradient descent steps and gossip averaging.
Our results show that our algorithms amplify privacy guarantees as a function of the distance between nodes in the graph.
arXiv Detail & Related papers (2022-06-10T13:32:35Z) - Weight Divergence Driven Divide-and-Conquer Approach for Optimal
Federated Learning from non-IID Data [0.0]
Federated Learning allows training of data stored in distributed devices without the need for centralizing training data.
We propose a novel Divide-and-Conquer training methodology that enables the use of the popular FedAvg aggregation algorithm.
arXiv Detail & Related papers (2021-06-28T09:34:20Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Decentralized Deep Learning using Momentum-Accelerated Consensus [15.333413663982874]
We consider the problem of decentralized deep learning where multiple agents collaborate to learn from a distributed dataset.
We propose and analyze a novel decentralized deep learning algorithm where the agents interact over a fixed communication topology.
Our algorithm is based on the heavy-ball acceleration method used in gradient-based protocol.
arXiv Detail & Related papers (2020-10-21T17:39:52Z) - A Low Complexity Decentralized Neural Net with Centralized Equivalence
using Layer-wise Learning [49.15799302636519]
We design a low complexity decentralized learning algorithm to train a recently proposed large neural network in distributed processing nodes (workers)
In our setup, the training data is distributed among the workers but is not shared in the training process due to privacy and security concerns.
We show that it is possible to achieve equivalent learning performance as if the data is available in a single place.
arXiv Detail & Related papers (2020-09-29T13:08:12Z) - Quantized Decentralized Stochastic Learning over Directed Graphs [52.94011236627326]
We consider a decentralized learning problem where data points are distributed among computing nodes communicating over a directed graph.
As the model size gets large, decentralized learning faces a major bottleneck that is the communication load due to each node transmitting messages (model updates) to its neighbors.
We propose the quantized decentralized learning algorithm over directed graphs that is based on the push-sum algorithm in decentralized consensus optimization.
arXiv Detail & Related papers (2020-02-23T18:25:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.