sqSGD: Locally Private and Communication Efficient Federated Learning
- URL: http://arxiv.org/abs/2206.10565v2
- Date: Wed, 22 Jun 2022 09:53:25 GMT
- Title: sqSGD: Locally Private and Communication Efficient Federated Learning
- Authors: Yan Feng, Tao Xiong, Ruofan Wu, LingJuan Lv, Leilei Shi
- Abstract summary: Federated learning (FL) is a technique that trains machine learning models from decentralized data sources.
We develop a gradient-based learning algorithm called sqSGD that addresses communication efficiency and high-dimensional compatibility.
Experiment results show sqSGD successfully learns large models like LeNet and ResNet with local privacy constraints.
- Score: 14.60645909629309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is a technique that trains machine learning models
from decentralized data sources. We study FL under local notions of privacy
constraints, which provides strong protection against sensitive data
disclosures via obfuscating the data before leaving the client. We identify two
major concerns in designing practical privacy-preserving FL algorithms:
communication efficiency and high-dimensional compatibility. We then develop a
gradient-based learning algorithm called \emph{sqSGD} (selective quantized
stochastic gradient descent) that addresses both concerns. The proposed
algorithm is based on a novel privacy-preserving quantization scheme that uses
a constant number of bits per dimension per client. Then we improve the base
algorithm in three ways: first, we apply a gradient subsampling strategy that
simultaneously offers better training performance and smaller communication
costs under a fixed privacy budget. Secondly, we utilize randomized rotation as
a preprocessing step to reduce quantization error. Thirdly, an adaptive
gradient norm upper bound shrinkage strategy is adopted to improve accuracy and
stabilize training. Finally, the practicality of the proposed framework is
demonstrated on benchmark datasets. Experiment results show that sqSGD
successfully learns large models like LeNet and ResNet with local privacy
constraints. In addition, with fixed privacy and communication level, the
performance of sqSGD significantly dominates that of various baseline
algorithms.
Related papers
- Preserving Privacy in Federated Learning with Ensemble Cross-Domain
Knowledge Distillation [22.151404603413752]
Federated Learning (FL) is a machine learning paradigm where local nodes collaboratively train a central model.
Existing FL methods typically share model parameters or employ co-distillation to address the issue of unbalanced data distribution.
We develop a privacy preserving and communication efficient method in a FL framework with one-shot offline knowledge distillation.
arXiv Detail & Related papers (2022-09-10T05:20:31Z) - Differentially Private Stochastic Gradient Descent with Low-Noise [49.981789906200035]
Modern machine learning algorithms aim to extract fine-grained information from data to provide accurate predictions, which often conflicts with the goal of privacy protection.
This paper addresses the practical and theoretical importance of developing privacy-preserving machine learning algorithms that ensure good performance while preserving privacy.
arXiv Detail & Related papers (2022-09-09T08:54:13Z) - On Differential Privacy for Federated Learning in Wireless Systems with
Multiple Base Stations [90.53293906751747]
We consider a federated learning model in a wireless system with multiple base stations and inter-cell interference.
We show the convergence behavior of the learning process by deriving an upper bound on its optimality gap.
Our proposed scheduler improves the average accuracy of the predictions compared with a random scheduler.
arXiv Detail & Related papers (2022-08-25T03:37:11Z) - Privacy-Preserving Federated Learning via System Immersion and Random
Matrix Encryption [4.258856853258348]
Federated learning (FL) has emerged as a privacy solution for collaborative distributed learning where clients train AI models directly on their devices instead of sharing their data with a centralized (potentially adversarial) server.
We propose a Privacy-Preserving Federated Learning (PPFL) framework built on the synergy of matrix encryption and system immersion tools from control theory.
We show that our algorithm provides the same level of accuracy and convergence rate as the standard FL with a negligible cost while revealing no information about clients' data.
arXiv Detail & Related papers (2022-04-05T21:28:59Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z) - FedPD: A Federated Learning Framework with Optimal Rates and Adaptivity
to Non-IID Data [59.50904660420082]
Federated Learning (FL) has become a popular paradigm for learning from distributed data.
To effectively utilize data at different devices without moving them to the cloud, algorithms such as the Federated Averaging (FedAvg) have adopted a "computation then aggregation" (CTA) model.
arXiv Detail & Related papers (2020-05-22T23:07:42Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z) - Adaptive Gradient Sparsification for Efficient Federated Learning: An
Online Learning Approach [11.986523531539165]
Federated learning (FL) is an emerging technique for training machine learning models using geographically dispersed data.
gradient sparsification (GS) can be applied, where instead of the full gradient, only a small subset of important elements of the gradient is communicated.
We propose a novel online learning formulation and algorithm for automatically determining the near-optimal communication and trade-off.
arXiv Detail & Related papers (2020-01-14T13:09:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.