The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality
- URL: http://arxiv.org/abs/2012.05451v3
- Date: Sat, 9 Jan 2021 14:53:00 GMT
- Title: The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality
- Authors: Moise Blanchard and M. Amine Bennouna
- Abstract summary: We prove upper bounds on quantities for shallow and deep neural networks.
We further prove that these bounds nearly match the minimal number of parameters any continuous function approximator needs to approximate Korobov functions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we analyze the number of neurons and training parameters that
a neural networks needs to approximate multivariate functions of bounded second
mixed derivatives -- Korobov functions. We prove upper bounds on these
quantities for shallow and deep neural networks, breaking the curse of
dimensionality. Our bounds hold for general activation functions, including
ReLU. We further prove that these bounds nearly match the minimal number of
parameters any continuous function approximator needs to approximate Korobov
functions, showing that neural networks are near-optimal function
approximators.
Related papers
- Dimension-independent learning rates for high-dimensional classification
problems [53.622581586464634]
We show that every $RBV2$ function can be approximated by a neural network with bounded weights.
We then prove the existence of a neural network with bounded weights approximating a classification function.
arXiv Detail & Related papers (2024-09-26T16:02:13Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Simultaneous approximation of a smooth function and its derivatives by
deep neural networks with piecewise-polynomial activations [2.15145758970292]
We derive the required depth, width, and sparsity of a deep neural network to approximate any H"older smooth function up to a given approximation error in H"older norms.
The latter feature is essential to control generalization errors in many statistical and machine learning applications.
arXiv Detail & Related papers (2022-06-20T01:18:29Z) - Benefits of Overparameterized Convolutional Residual Networks: Function
Approximation under Smoothness Constraint [48.25573695787407]
We prove that large ConvResNets can not only approximate a target function in terms of function value, but also exhibit sufficient first-order smoothness.
Our theory partially justifies the benefits of using deep and wide networks in practice.
arXiv Detail & Related papers (2022-06-09T15:35:22Z) - Optimal Learning Rates of Deep Convolutional Neural Networks: Additive
Ridge Functions [19.762318115851617]
We consider the mean squared error analysis for deep convolutional neural networks.
We show that, for additive ridge functions, convolutional neural networks followed by one fully connected layer with ReLU activation functions can reach optimal mini-max rates.
arXiv Detail & Related papers (2022-02-24T14:22:32Z) - Near-Minimax Optimal Estimation With Shallow ReLU Neural Networks [19.216784367141972]
We study the problem of estimating an unknown function from noisy data using shallow (single-hidden layer) ReLU neural networks.
We quantify the performance of these neural network estimators when the data-generating function belongs to the space of functions of second-order bounded variation in the Radon domain.
arXiv Detail & Related papers (2021-09-18T05:56:06Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - On the approximation of functions by tanh neural networks [0.0]
We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular.
We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks.
arXiv Detail & Related papers (2021-04-18T19:30:45Z) - Deep neural network approximation of analytic functions [91.3755431537592]
entropy bound for the spaces of neural networks with piecewise linear activation functions.
We derive an oracle inequality for the expected error of the considered penalized deep neural network estimators.
arXiv Detail & Related papers (2021-04-05T18:02:04Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.