On the approximation of functions by tanh neural networks
- URL: http://arxiv.org/abs/2104.08938v1
- Date: Sun, 18 Apr 2021 19:30:45 GMT
- Title: On the approximation of functions by tanh neural networks
- Authors: Tim De Ryck, Samuel Lanthaler and Siddhartha Mishra
- Abstract summary: We derive bounds on the error, in high-order Sobolev norms, incurred in the approximation of Sobolev-regular.
We show that tanh neural networks with only two hidden layers suffice to approximate functions at comparable or better rates than much deeper ReLU neural networks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We derive bounds on the error, in high-order Sobolev norms, incurred in the
approximation of Sobolev-regular as well as analytic functions by neural
networks with the hyperbolic tangent activation function. These bounds provide
explicit estimates on the approximation error with respect to the size of the
neural networks. We show that tanh neural networks with only two hidden layers
suffice to approximate functions at comparable or better rates than much deeper
ReLU neural networks.
Related papers
- Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
We propose to represent neural networks as computational graphs of parameters.
Our approach enables a single model to encode neural computational graphs with diverse architectures.
We showcase the effectiveness of our method on a wide range of tasks, including classification and editing of implicit neural representations.
arXiv Detail & Related papers (2024-03-18T18:01:01Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
We study weight decay regularized training problems of deep neural networks with threshold activations.
We derive a simplified convex optimization formulation when the dataset can be shattered at a certain layer of the network.
arXiv Detail & Related papers (2023-03-06T18:59:13Z) - Semantic Strengthening of Neuro-Symbolic Learning [85.6195120593625]
Neuro-symbolic approaches typically resort to fuzzy approximations of a probabilistic objective.
We show how to compute this efficiently for tractable circuits.
We test our approach on three tasks: predicting a minimum-cost path in Warcraft, predicting a minimum-cost perfect matching, and solving Sudoku puzzles.
arXiv Detail & Related papers (2023-02-28T00:04:22Z) - Exploring the Approximation Capabilities of Multiplicative Neural
Networks for Smooth Functions [9.936974568429173]
We consider two classes of target functions: generalized bandlimited functions and Sobolev-Type balls.
Our results demonstrate that multiplicative neural networks can approximate these functions with significantly fewer layers and neurons.
These findings suggest that multiplicative gates can outperform standard feed-forward layers and have potential for improving neural network design.
arXiv Detail & Related papers (2023-01-11T17:57:33Z) - Simultaneous approximation of a smooth function and its derivatives by
deep neural networks with piecewise-polynomial activations [2.15145758970292]
We derive the required depth, width, and sparsity of a deep neural network to approximate any H"older smooth function up to a given approximation error in H"older norms.
The latter feature is essential to control generalization errors in many statistical and machine learning applications.
arXiv Detail & Related papers (2022-06-20T01:18:29Z) - Going Beyond Linear RL: Sample Efficient Neural Function Approximation [76.57464214864756]
We study function approximation with two-layer neural networks.
Our results significantly improve upon what can be attained with linear (or eluder dimension) methods.
arXiv Detail & Related papers (2021-07-14T03:03:56Z) - Topological obstructions in neural networks learning [67.8848058842671]
We study global properties of the loss gradient function flow.
We use topological data analysis of the loss function and its Morse complex to relate local behavior along gradient trajectories with global properties of the loss surface.
arXiv Detail & Related papers (2020-12-31T18:53:25Z) - The Representation Power of Neural Networks: Breaking the Curse of
Dimensionality [0.0]
We prove upper bounds on quantities for shallow and deep neural networks.
We further prove that these bounds nearly match the minimal number of parameters any continuous function approximator needs to approximate Korobov functions.
arXiv Detail & Related papers (2020-12-10T04:44:07Z) - Measuring Model Complexity of Neural Networks with Curve Activation
Functions [100.98319505253797]
We propose the linear approximation neural network (LANN) to approximate a given deep model with curve activation function.
We experimentally explore the training process of neural networks and detect overfitting.
We find that the $L1$ and $L2$ regularizations suppress the increase of model complexity.
arXiv Detail & Related papers (2020-06-16T07:38:06Z) - Approximation in shift-invariant spaces with deep ReLU neural networks [7.7084107194202875]
We study the expressive power of deep ReLU neural networks for approximating functions in dilated shift-invariant spaces.
Approximation error bounds are estimated with respect to the width and depth of neural networks.
arXiv Detail & Related papers (2020-05-25T07:23:47Z) - Approximation smooth and sparse functions by deep neural networks
without saturation [0.6396288020763143]
In this paper, we aim at constructing deep neural networks with three hidden layers to approximate smooth and sparse functions.
We prove that the constructed deep nets can reach the optimal approximation rate in approximating both smooth and sparse functions with controllable magnitude of free parameters.
arXiv Detail & Related papers (2020-01-13T09:28:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.