論文の概要: Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An
Overview Of Trends And Perspectives
- arxiv url: http://arxiv.org/abs/2012.05508v2
- Date: Sun, 2 May 2021 17:13:48 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 20:57:51.135924
- Title: Deep Learning Methods For Synthetic Aperture Radar Image Despeckling: An
Overview Of Trends And Perspectives
- Title(参考訳): 合成開口レーダ画像のデスペックリングのための深層学習手法 : 動向と展望
- Authors: Giulia Fracastoro, Enrico Magli, Giovanni Poggi, Giuseppe Scarpa,
Diego Valsesia, Luisa Verdoliva
- Abstract要約: このようなノイズを除去し、下流の画像処理タスクの精度を向上させるために、デスペクリングは重要なタスクである。
本稿では,sarデスペックリングに適用する深層学習手法に関する文献を調査し,教師ありアプローチと近年の自己教師ありアプローチの両方をカバーする。
- 参考スコア(独自算出の注目度): 45.87348004985991
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Synthetic aperture radar (SAR) images are affected by a spatially-correlated
and signal-dependent noise called speckle, which is very severe and may hinder
image exploitation. Despeckling is an important task that aims at removing such
noise, so as to improve the accuracy of all downstream image processing tasks.
The first despeckling methods date back to the 1970's, and several model-based
algorithms have been developed in the subsequent years. The field has received
growing attention, sparkled by the availability of powerful deep learning
models that have yielded excellent performance for inverse problems in image
processing. This paper surveys the literature on deep learning methods applied
to SAR despeckling, covering both the supervised and the more recent
self-supervised approaches. We provide a critical analysis of existing methods
with the objective to recognize the most promising research lines, to identify
the factors that have limited the success of deep models, and to propose ways
forward in an attempt to fully exploit the potential of deep learning for SAR
despeckling.
- Abstract(参考訳): 合成開口レーダ(sar)画像は、スペックル(speckle)と呼ばれる空間的関連と信号依存のノイズによって影響を受ける。
このようなノイズを除去し、下流の画像処理タスクの精度を向上させるために、デスペックリングは重要なタスクである。
最初のデスペックリング手法は1970年代まで遡り、その後いくつかのモデルベースのアルゴリズムが開発されてきた。
この分野は、画像処理における逆問題に優れたパフォーマンスをもたらす強力なディープラーニングモデルが利用可能になったことで、注目を集めている。
本稿では,sarデスペックリングに適用する深層学習手法に関する文献を調査し,教師ありアプローチと近年の自己教師ありアプローチの両方をカバーする。
本稿では,最有望な研究線を認識すること,深層モデルの成功を制限した要因を特定すること,SAR の深層学習の可能性を完全に活用する手法を提案することを目的として,既存手法の批判的分析を行う。
関連論文リスト
- Deep Radon Prior: A Fully Unsupervised Framework for Sparse-View CT
Reconstruction [6.509941446269504]
提案するフレームワークはデータセットを必要とせず、優れた解釈可能性と一般化能力を示す。
実験結果から,提案手法は画像アーチファクトを効果的に抑制しつつ,詳細な画像を生成することができることが示された。
論文 参考訳(メタデータ) (2023-12-30T04:11:08Z) - Diffusion Models for Image Restoration and Enhancement -- A
Comprehensive Survey [96.99328714941657]
本稿では,近年の拡散モデルに基づく画像復元手法について概観する。
我々は、赤外線とブラインド/現実世界の両方で拡散モデルを用いて、革新的なデザインを分類し、強調する。
本稿では,拡散モデルに基づくIRの今後の研究に向けた5つの可能性と課題を提案する。
論文 参考訳(メタデータ) (2023-08-18T08:40:38Z) - Two Approaches to Supervised Image Segmentation [55.616364225463066]
本研究は、深層学習とマルチセットニューロンのアプローチの比較実験を開発する。
ディープラーニングアプローチは、画像セグメンテーションの実行の可能性を確認した。
代替のマルチセット手法では、計算資源をほとんど必要とせずに精度を向上することができた。
論文 参考訳(メタデータ) (2023-07-19T16:42:52Z) - Near-filed SAR Image Restoration with Deep Learning Inverse Technique: A
Preliminary Study [5.489791364472879]
近接場合成開口レーダ(SAR)は、ターゲットの散乱分布ホットスポットの高解像度画像を提供する。
一方、撮像の結果は、サイドローブ、クラッタ、ノイズから必然的に劣化する。
イメージを復元するために、現在の手法では、例えば、点拡散関数(PSF)は空間的に一貫したものであり、ターゲットはスパース点散乱器などで構成されている。
我々は、分解モデルを空間的に可変な複素畳み込みモデルに再構成し、近接場SARのシステム応答を考慮した。
モデルに基づくディープラーニングネットワークは、復元するために設計されている
論文 参考訳(メタデータ) (2022-11-28T01:28:33Z) - Deep Learning-Based Anomaly Detection in Synthetic Aperture Radar
Imaging [11.12267144061017]
本手法は,異常を周囲から逸脱する異常パターンとみなすが,その特徴を事前に把握していない。
提案手法は自己教師付きアルゴリズムを用いてこれらの問題に対処することを目的としている。
従来のReed-Xiaoliアルゴリズムと比較して,提案手法の利点を示す実験を行った。
論文 参考訳(メタデータ) (2022-10-28T10:22:29Z) - SAR Despeckling using a Denoising Diffusion Probabilistic Model [52.25981472415249]
スペックルの存在は画像品質を劣化させ、SAR画像理解アプリケーションの性能に悪影響を及ぼす。
本稿では,SAR脱種のための拡散確率モデルであるSAR-DDPMを紹介する。
提案手法は, 最先端の切り離し法と比較して, 定量化と定性化の両面で有意な改善を実現している。
論文 参考訳(メタデータ) (2022-06-09T14:00:26Z) - Real-World Image Super-Resolution by Exclusionary Dual-Learning [98.36096041099906]
実世界の画像超解像は,高品質な画像を得るための実用的な画像復元問題である。
深層学習に基づく手法は、現実世界の超解像データセットの復元に期待できる品質を実現している。
本稿では,RWSR-EDL(Real-World Image Super-Resolution by Exclusionary Dual-Learning)を提案する。
論文 参考訳(メタデータ) (2022-06-06T13:28:15Z) - Depth image denoising using nuclear norm and learning graph model [107.51199787840066]
グループベース画像復元法は,パッチ間の類似性収集に有効である。
各パッチに対して、検索ウィンドウ内で最もよく似たパッチを見つけ、グループ化する。
提案手法は, 主観的, 客観的両面において, 最先端の復調法よりも優れている。
論文 参考訳(メタデータ) (2020-08-09T15:12:16Z) - Speckle2Void: Deep Self-Supervised SAR Despeckling with Blind-Spot
Convolutional Neural Networks [30.410981386006394]
切り離しはシーン分析アルゴリズムの 重要な予備段階です
ディープラーニングの最近の成功は、新しい世代の非仕様化技術が想定されている。
本稿では,自己教師型ベイズ解法を提案する。
論文 参考訳(メタデータ) (2020-07-04T11:38:48Z) - SAR2SAR: a semi-supervised despeckling algorithm for SAR images [3.9490074068698]
本稿では,自己超越型ディープラーニングアルゴリズムSAR2SARを提案する。
時間的変化の補償と、スペックル統計に適応した損失関数に基づいて、SAR非特異化に適応する戦略を提示する。
提案アルゴリズムの可能性を示すために,実画像における結果について考察する。
論文 参考訳(メタデータ) (2020-06-26T15:07:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。