Equivalent Causal Models
- URL: http://arxiv.org/abs/2012.05603v1
- Date: Thu, 10 Dec 2020 11:43:35 GMT
- Title: Equivalent Causal Models
- Authors: Sander Beckers
- Abstract summary: Two models are equivalent when they agree on all "essential" causal information that can be expressed using their common variables.
I do so by focussing on the two main features of causal models, namely their structural relations and their functional relations.
- Score: 3.198144010381572
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The aim of this paper is to offer the first systematic exploration and
definition of equivalent causal models in the context where both models are not
made up of the same variables. The idea is that two models are equivalent when
they agree on all "essential" causal information that can be expressed using
their common variables. I do so by focussing on the two main features of causal
models, namely their structural relations and their functional relations. In
particular, I define several relations of causal ancestry and several relations
of causal sufficiency, and require that the most general of these relations are
preserved across equivalent models.
Related papers
- Actual Causation and Nondeterministic Causal Models [7.550566004119157]
I take advantage of the increased expressivity offered by nondeterministic causal models to offer a novel definition of actual causation.
Although novel, the resulting definition arrives at verdicts that are almost identical to those of my previous definition.
arXiv Detail & Related papers (2025-03-10T20:53:47Z) - Reply to "Comment on 'Experimentally adjudicating between different causal accounts of Bell-inequality violations via statistical model selection'" [0.0]
In their comment, Hance and Hossenfelder argue that we have misrepresented the purpose of superdeterministic models.
We dispute this claim by recalling the different classes of superdeterministic models we defined in our article and our conclusions regarding which of these are disfavoured by our experimental results.
arXiv Detail & Related papers (2024-12-03T20:47:47Z) - Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Inducing Causal Structure for Abstractive Text Summarization [76.1000380429553]
We introduce a Structural Causal Model (SCM) to induce the underlying causal structure of the summarization data.
We propose a Causality Inspired Sequence-to-Sequence model (CI-Seq2Seq) to learn the causal representations that can mimic the causal factors.
Experimental results on two widely used text summarization datasets demonstrate the advantages of our approach.
arXiv Detail & Related papers (2023-08-24T16:06:36Z) - Axiomatization of Interventional Probability Distributions [4.02487511510606]
Causal intervention is axiomatized under the rules of do-calculus.
We show that under our axiomatizations, the intervened distributions are Markovian to the defined intervened causal graphs.
We also show that a large class of natural structural causal models satisfy the theory presented here.
arXiv Detail & Related papers (2023-05-08T06:07:42Z) - Causal models in string diagrams [0.0]
The framework of causal models provides a principled approach to causal reasoning, applied today across many scientific domains.
We present this framework in the language of string diagrams, interpreted formally using category theory.
We argue and demonstrate that causal reasoning according to the causal model framework is most naturally and intuitively done as diagrammatic reasoning.
arXiv Detail & Related papers (2023-04-15T21:54:48Z) - Causality Inspired Representation Learning for Domain Generalization [47.574964496891404]
We introduce a general structural causal model to formalize the Domain generalization problem.
Our goal is to extract the causal factors from inputs and then reconstruct the invariant causal mechanisms.
We highlight that ideal causal factors should meet three basic properties: separated from the non-causal ones, jointly independent, and causally sufficient for the classification.
arXiv Detail & Related papers (2022-03-27T08:08:33Z) - A general framework for cyclic and fine-tuned causal models and their
compatibility with space-time [2.0305676256390934]
Causal modelling is a tool for generating causal explanations of observed correlations.
Existing frameworks for quantum causality tend to focus on acyclic causal structures that are not fine-tuned.
Cyclist causal models can be used to model physical processes involving feedback.
Cyclist causal models may also be relevant in exotic solutions of general relativity.
arXiv Detail & Related papers (2021-09-24T18:00:08Z) - Restricted Hidden Cardinality Constraints in Causal Models [0.0]
Causal models with unobserved variables impose nontrivial constraints on the distributions over the observed variables.
We consider causal models with a promise that unobserved variables have known cardinalities.
arXiv Detail & Related papers (2021-09-13T00:52:08Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - Systematic Evaluation of Causal Discovery in Visual Model Based
Reinforcement Learning [76.00395335702572]
A central goal for AI and causality is the joint discovery of abstract representations and causal structure.
Existing environments for studying causal induction are poorly suited for this objective because they have complicated task-specific causal graphs.
In this work, our goal is to facilitate research in learning representations of high-level variables as well as causal structures among them.
arXiv Detail & Related papers (2021-07-02T05:44:56Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.