論文の概要: HpGAN: Sequence Search with Generative Adversarial Networks
- arxiv url: http://arxiv.org/abs/2012.05645v1
- Date: Thu, 10 Dec 2020 13:05:20 GMT
- ステータス: 処理完了
- システム内更新日: 2021-05-15 06:05:11.791183
- Title: HpGAN: Sequence Search with Generative Adversarial Networks
- Title(参考訳): HpGAN: 生成逆ネットワークを用いたシーケンス検索
- Authors: Mingxing Zhang, Zhengchun Zhou, Lanping Li, Zilong Liu, Meng Yang, and
Yanghe Feng
- Abstract要約: 本稿では,GAN (Generative Adversarial Network) をアルゴリズムで検索するHpGANという新しい手法を提案する。
HpGANはゼロサムゲームに基づいて生成モデルをトレーニングし、トレーニングシーケンスに類似した特徴を持つシーケンスを生成する。
- 参考スコア(独自算出の注目度): 21.770047587104923
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Sequences play an important role in many engineering applications and
systems. Searching sequences with desired properties has long been an
interesting but also challenging research topic. This article proposes a novel
method, called HpGAN, to search desired sequences algorithmically using
generative adversarial networks (GAN). HpGAN is based on the idea of zero-sum
game to train a generative model, which can generate sequences with
characteristics similar to the training sequences. In HpGAN, we design the
Hopfield network as an encoder to avoid the limitations of GAN in generating
discrete data. Compared with traditional sequence construction by algebraic
tools, HpGAN is particularly suitable for intractable problems with complex
objectives which prevent mathematical analysis. We demonstrate the search
capabilities of HpGAN in two applications: 1) HpGAN successfully found many
different mutually orthogonal complementary code sets (MOCCS) and optimal
odd-length Z-complementary pairs (OB-ZCPs) which are not part of the training
set. In the literature, both MOCSSs and OB-ZCPs have found wide applications in
wireless communications. 2) HpGAN found new sequences which achieve four-times
increase of signal-to-interference ratio--benchmarked against the well-known
Legendre sequence--of a mismatched filter (MMF) estimator in pulse compression
radar systems. These sequences outperform those found by AlphaSeq.
- Abstract(参考訳): シーケンスは多くのエンジニアリングアプリケーションやシステムで重要な役割を果たす。
望ましい性質を持つ配列の探索は、長い間興味深いが困難な研究トピックであった。
本稿では, GAN (Generative Adversarial Network) を用いて, 所望の配列をアルゴリズム的に探索するHpGANを提案する。
HpGANはゼロサムゲームに基づいて生成モデルをトレーニングし、トレーニングシーケンスに類似した特徴を持つシーケンスを生成する。
HpGANでは,離散データ生成におけるGANの制限を回避するために,ホップフィールドネットワークをエンコーダとして設計する。
代数ツールによる伝統的なシーケンス構築と比較すると、HpGANは数学的な解析を防ぐ複雑な目的を持つ難解な問題に特に適している。
1) HpGANは, 相互直交相補的符号集合 (MOCCS) と最適奇長Z-補的ペア (OB-ZCPs) の2つの用途で, 訓練セットに含まれない多くの異なる相互直交相補的符号集合 (MOCCS) を発見した。
文献では、MOCSSとOB-ZCPの両方が無線通信に広く応用されている。
2) hpganはパルス圧縮レーダシステムにおけるミスマッチフィルタ(mmf)推定器の有名なレジェンド列に対して4倍の信号対干渉比を達成する新しいシーケンスを発見した。
これらの配列はalphaseqで発見された配列よりも優れている。
関連論文リスト
- Rethinking Model Selection and Decoding for Keyphrase Generation with
Pre-trained Sequence-to-Sequence Models [76.52997424694767]
キーフレーズ生成(英: Keyphrase Generation, KPG)は、NLPにおける長年の課題である。
Seq2seq 事前訓練言語モデル (PLM) は KPG に転換期を迎え、有望な性能改善をもたらした。
本稿では, PLM に基づく KPG におけるモデル選択と復号化戦略の影響について, 系統解析を行った。
論文 参考訳(メタデータ) (2023-10-10T07:34:45Z) - Accelerating Grover Adaptive Search: Qubit and Gate Count Reduction Strategies with Higher-Order Formulations [2.9564164925541503]
グロバー適応探索(Grover Adaptive Search、GAS)は、二項最適化問題の解法として設計された量子抜粋探索アルゴリズムである。
キュービット数と必要ゲート数を同時に削減できる高階二項式を提案する。
論文 参考訳(メタデータ) (2023-08-03T07:20:24Z) - HKNAS: Classification of Hyperspectral Imagery Based on Hyper Kernel
Neural Architecture Search [104.45426861115972]
設計したハイパーカーネルを利用して,構造パラメータを直接生成することを提案する。
我々は1次元または3次元の畳み込みを伴う画素レベルの分類と画像レベルの分類を別々に行う3種類のネットワークを得る。
6つの公開データセットに関する一連の実験は、提案手法が最先端の結果を得ることを示した。
論文 参考訳(メタデータ) (2023-04-23T17:27:40Z) - Quantum algorithm for position weight matrix matching [0.9404723842159504]
バイオインフォマティクス, 位置重み行列(PWM)マッチングにおける問題に対する2つの量子アルゴリズムを提案する。
提案した2つのアルゴリズム、ナイーブ法とモンテカルロ法は、生物学的配列のエントリへの分子アクセスを考慮し、一致したセグメントを出力する。
論文 参考訳(メタデータ) (2023-03-07T00:34:16Z) - Graph Positional Encoding via Random Feature Propagation [39.84324765957645]
ノード特徴拡張スキームの2つの主要なファミリーがGNNの強化のために検討されている。
本稿では、上記の2つのアプローチのリンクを引いた、位置符号化方式の新たなファミリーを提案する。
我々は、RFPが複数のノード分類とグラフ分類ベンチマークにおいてスペクトルPEとランダムの特徴の両方を著しく上回っていることを実証的に実証した。
論文 参考訳(メタデータ) (2023-03-06T06:28:20Z) - Seq-HyGAN: Sequence Classification via Hypergraph Attention Network [0.0]
シークエンス分類は、健康におけるゲノム分類やビジネスにおける異常検出など、さまざまな領域における幅広い実世界の応用を有する。
シーケンスデータに明示的な機能がないため、機械学習モデルでは難しい。
本稿では,新しいハイパーグラフ注意ネットワークモデル,Seq-HyGANを提案する。
論文 参考訳(メタデータ) (2023-03-04T11:53:33Z) - Diversifying Design of Nucleic Acid Aptamers Using Unsupervised Machine
Learning [54.247560894146105]
短い一本鎖RNAとDNA配列(アプタマー)の逆設計は、一連の望ましい基準を満たす配列を見つけるタスクである。
我々は、Pottsモデルとして知られる教師なし機械学習モデルを用いて、制御可能なシーケンスの多様性を持つ新しい有用なシーケンスを発見することを提案する。
論文 参考訳(メタデータ) (2022-08-10T13:30:58Z) - Tensor Representations for Action Recognition [54.710267354274194]
シーケンスにおける人間の行動は、空間的特徴とその時間的ダイナミクスの複雑な相互作用によって特徴づけられる。
アクション認識タスクの視覚的特徴間の高次関係を捉えるための新しいテンソル表現を提案する。
我々は,高次テンソルといわゆる固有値パワー正規化(NEP)を用いて,高次事象のスペクトル検出を行う。
論文 参考訳(メタデータ) (2020-12-28T17:27:18Z) - Adaptive Linear Span Network for Object Skeleton Detection [56.78705071830965]
本研究では,適応線形スパンネットワーク(AdaLSN)を提案する。
AdaLSNは、精度とレイテンシのトレードオフを著しく高めることで、その汎用性を裏付ける。
また、エッジ検出や道路抽出といったイメージ・ツー・マスクのタスクに適用可能であることも示している。
論文 参考訳(メタデータ) (2020-11-08T12:51:14Z) - Recent Developments Combining Ensemble Smoother and Deep Generative
Networks for Facies History Matching [58.720142291102135]
本研究は、ファシズムモデルのための連続パラメータ化を構築するためのオートエンコーダネットワークの利用に焦点を当てる。
本稿では,VAE,GAN,Wasserstein GAN,変分自動符号化GAN,サイクルGANの主成分分析(PCA),転送スタイルネットワークのPCA,スタイル損失のVAEの7種類の定式化をベンチマークする。
論文 参考訳(メタデータ) (2020-05-08T21:32:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。